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Extension of the double Newton’s method

convergence order via the bi-variate power series

weight function for solving nonlinear models

Oghovese Ogbereyivwe∗ and Simon Ajiroghene Ogumeyo

Abstract. This manuscript put forward one and two-parameter families of mod-

ified double Newton iterative structure with convergence order six, for approxima-

tion of the solution of nonlinear model. The modification technique involves the

introduction of quotient of two converging bi-variate Power series based weight

function to the second step of the double Newton’s method. Some particular

members of the developed methods have experimented on some physical phenom-

ena modeled into nonlinear equations and results compared with some existing

methods.

1. Introduction

Several real phenomena have been and are continuously modeled into nonlinear

model (NLM) of the form ψ(x) = 0, and for better insight into the model, its solution

δ is often required. Unfortunately, there is no existing unified analytic structure for

obtaining the solution the NLM, hence iterative structures are resorted. Since the

emergence of the classical convergence order (CO) two Newton’s method (NM) [14]

put forward as:

xk+1 = xk −
ψ (xk)

ψ′ (xk)
; (1)

modification have been made on it with the aim of improving its CO and efficiency.

The use of the composition, weight function or both techniques have been exploited
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by many authors with the sole aim of modifying (1) to attaining higher CO and EI.

For example, an early modification to iterative structure (1) is the double Newton

method (DNM) [14] designed by composing two NM that yielded a corresponding

iterative structure as:

yk = xk −
ψ (xk)

ψ′ (xk)
;

xk+1 = yk −
ψ (yk)

ψ′ (yk)
.

(2)

Although the iterative structure (2) is of convergence order (CO) 4 and can

be considered as an improvement of (1), the efficiency index EI remains 1.4142.

The n-times composition of the NM will produce higher CO iterative structure

with no changes in EI because, more functions evaluation will be required in an

iterative cycle as n increases . In [7], Ogbereyivwe and Muka noted that the golden

principles for developing new iterative structure for solving NLM is that the method

should attain high CO by utilizing few numbers of functions evaluations and be

simply structured. Consequently, many authors had this rule in mind, in putting

forward new iterative structures with better CO and EI via the application of

the composition and weight function(s) techniques. For instance, in the two sets

of works ([1, 2, 3, 5, 8, 9, 10, 12]) and some reference therein, two and three

step composition of the NM and many types of functions of iterative structure(s)

with weight function(s) were employed to present several CO four and six iterative

structures respectively with EI higher that that of (1) and (2). In Ghanbari[3], the

structure of the weight function used in the second step of the DNM is a quotient of

two, one-variate power series of order two. Further, Lee and Kim in [6] used certain

order two, bi-variate power series as weight function in the second step of the DNM

(2).

As a follow up to these research trends, a quotient of two kinds of bi-variate

power series and their variants are utilised as weight functions attached to the second

step of iterative structure (2) to develop CO six iterative structures with better EI

than that of (2) for solving NLM. The remaining parts of this manuscript includes

the main contributions of this work presented in Section 2, the developed methods

implementation on some test problems and comparison are provided in Section 3

and conclusion given in Section 4.

2. Methods Formation

The main contributions of this manuscript is presented in the two subsections of this

section. The first subsection presents the modified DNM developed via the use of

quotient of two second order bi-variate power series as weight function in its second

step, while in the second subsection, the variant of the weight function is utilised.
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2.1. The First Family of Power Series Based DNM. In this subsection, a

new family of an iterative structure is constructed by the introduction of the quotient

of two second order convergent bi-variate power series G (s, u), in the second step

of the DNM. Consequently, the corresponding iterative structure is put forward as:

yk = xk −
ψ (xk)

ψ′ (xk)
;

xk+1 = yk −
ψ (yk)

ψ′ (yk)
G (s, u) ;

G (s, u) =

(
1 +

2∑
i=1

(ai + ai+1s)u
i

)
/

(
1 +

2∑
i=1

(bi + bi+1s)u
i

)
,

(3)

where s = ψ′(y)
ψ′(x)

, u = ψ(y)
ψ(x)

and ai, bi, {i = 1, 2, 3} are real parameters to be determined

and are responsible for ensuring the convergence of the method, with high order and

precision. To determine the convergence of IM (3), it is required to obtain its As-

ymptotic error equation in the form ξi+1 = ηξρi +O(ξρ+1
i ) , (where ξi = xi− δ is the

method’s error at ith iteration point i, and δ is the exact solution of ψ(x) = 0), via

the Taylor series expansion of ψ (·) and ψ′ (·) as contained in the iterative structure.

When the error equation is obtained, the quantities ρ and η are referred to as the

method’s CO and asymptotic error constant respectively. Further, the EI of the

method is computed as ρ
1
τ (where τ is the number different functions evaluation in

(3)).

The proof of the next theorem, establishes the convergence of the method (3).

Theorem 2.1. Suppose the scalar function ψ : D ⊂ R → R has a simple solution

δ and is differentiable for at least four times in D and ψ′ (·) ̸= 0. Again, for a choice

of x0 close to δ, the sequence of approximation {xi}i≥0 , (xj ∈ D), produced by the

family of IM in (3) converges to δ with CO six when the conditions on the parameters

ai and bi holds as following: a2 = −a1 − 2, a3 = −a1 − 7, b1 = a1 − 2, b2 = −a1 and

b3 = −a1 − 6.

Proof. By the replacement of x with xi in the Taylor series of ψ (x) and ψ′ (x)

about δ, the following expressions are obtained:

ψ (xi) = ψ′ (δ)

(
ξ1 +

4∑
n=2

cnξ
n
i +O

(
ξ5i
))

, (4)

and

ψ′ (xi) = ψ′ (δ)
(
1 + 2c2ξk + 3c3ξ

2
k + · · ·+ 7c7ξ

6
k +O

(
ξ7i
))
, (5)

where cj =
1
j!
ψ(j)(δ)
ψ′(δ)

, j ≥ 2.

When the expressions in (4) and (5) are substituted in the first step of (3), the series

expansion for y is obtained as:
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yk =δ + c2ξ
2
k +

(
2c3 − 2c22

)
ξ3k +

(
3c4 − 7c2c3 + 4c32

)
ξ4k

+
(
4c5 − 10c2c4 − 6c23 + 20c22c3 − 8c82

)
ξ5k

+
(
5c6 − 13c2c5 − 17c3c4 + 28c22c4 + 33c2c

2
3 − 52c32c3 + 16c52

)
ξ6k +O

(
ξ7k
) (6)

Again, using (4) and (5) with the Taylor expansions of ψ(y) and ψ′(y), the corre-

sponding expansions for uk and sk are obtained respectively as:

uk = c2ξk +
(
2c3 − 2c22

)
ξ22 +

(
3c4 − 10c2c3 + 8c32

)
ξ3k

+
(
4c5 − 14c2c4 − 8c23 + 37c22 − 20c42

)
ξ4k

+
(
5c6 − 18c2c5 − 22c3c4 + 51c22c4 + 55c2c

3
3 − 118c32 + 48c52

)
ξ6k +O

(
ξ7k
)
(7)

and

sk = 1 + 2c2ξk +
(
−3c3 + 6c22

)
ξ2k − 4

(
c4 − 4c2c3 + 4c32

)
ξ3k

+
(
−5c5 − 22c2c4 + 9c23 − 61c22 + 40c42

)
ξ4k

+
(
−6c6 + 28c2c5 + 24c3c4 − 88c22c4 − 66c2c

2
3 + 198c32c3 − 96c52

)
ξ5k

+ (−7c7 + c2) (34c6 − 194c3c4) + 30c3c5 + 7c22
(
−16c5 + 415c23

)
+ 16c24 + 300c32 − 15c33 − 584c42c3 + 224c62)ξ

6
k +O

(
ξ7k
)
.

(8)

Now;

ψ (yk)

ψ′ (yk)
=c2ξk +

(
2c3 − 2c22

)
ξ3k +

(
3c4 − 7c2c3 + 3c32

)
ξ4k

− 2
(
−2c5 + 5c2c4 + 3c23 − 8c22 + 2c42

)
ξ5k

+
(
5c6 − 13c2c5 − 17c3c4 + 22c22c4 + 29c2c

2
3 − 32c32c3 + 6c52

)
ξ5k +O

(
ξ6k
)
.

(9)

From the expressions in (7) and (8),

1+
2∑
i=1

(ai + ai+1s)u
i = 1 + (a1 + a2) c2ξk

+
(
−3a1c

2
2 − 4a2c

2
2 + a3c

2
2 + 2a1c3 + 2a2c3

)
ξ2k

+
(
4a3c2

(
c3 − 2c22

)
+ a2

(
14c32 − 13c2c3 + 3c4

)
+ a1

(
8c32 − 10c2c3 + 3c4

))
ξ3k

+
(
a3
(
43c42 − 43c22c3 + 4c23 + 6c2c4

)
+ a2

(
−45c2c

4
2 + 62c22 − 18c2c4 + 4c5

))
+ a1

(
−20c42 + 37c22c3 − 8c23 − 14c2c4 + 4c5

)
)ξ4k

+
(
2a3
(
−95c52 + 144c32c3 − 38c2c

2
3 − 31c22c4 + 6c3c4 + 4c2c5

))
+ a2

(
136c52 − 251c32c3 + · · ·+ 5c6

)
+ a1

(
48c52 − 118c32c3 + · · ·+ 5c6

)
)ξ5k +O

(
ξ6k
)

(10)
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and

1+
2∑
i=1

(bi + bi+1s)u
i = 1 + (b1 + b2) c2ξk

+
(
−3b1c

2
2 − 4b2c

2
2 + b3c

2
2 + 2b1c3 + 2b2c3

)
ξ2k

+
(
4b3c2

(
c3 − 2c22

)
+ b2

(
14c32 − 13c2c3 + 3c4

)
+ b1

(
8c32 − 10c2c3 + 3c4

))
ξ3k

+
(
b3
(
43c42 − 43c22c3 + 4c23 + 6c2c4

)
+ b2

(
−45c2c

4
2 + 62c22 − 18c2c4 + 4c5

))
+ b1

(
−20c42 + 37c22c3 − 8c23 − 14c2c4 + 4c5

)
)ξ4k

+
(
2b3
(
−95c52 + 144c32c3 − 38c2c

2
3 − 31c22c4 + 6c3c4 + 4c2c5

))
+ b2

(
136c52 − 251c32c3 + · · ·+ 5c6

)
+ b1

(
48c52 − 118c32c3 + · · ·+ 5c6

)
)ξ5k +O

(
ξ6k
)
.

(11)

The quotient of (10) and (11) is:

G (s, u) = 1 + (a1 + a2 − b1 − b2) c2ξk +
(
a3c

2
2 + 3b1c

2
2 + b21c

2
2 + 4b2c

2
2 + 2b1b2c

2
2 + b22

)
− b3c

2
2 − a1

(
(3 + b1 + b2) c

2
2 − 2c3

)
− a2

(
(4 + b1 + b2) c

2
2 − 2c3

)
− 2b1c3 − 2b2b3)ξ

3
k +

6∑
i=3

Ωiξ
i
k +O

(
ξ7k
)
.

(12)

Using (6), (9) and (12) in the second step of (3), results to the error equation:

xk+1 =δ −
(
(a1 + a2 − b1 − b2) c

2
2ξ

3
k

)
− c2

((
1− a3 − 5b1 − b21 − 6b2 − 2b1b2 − b22 + a1 (5 + b1 + b2)

))
+ a2 ((6 + b1 + b2) + b3) c

2
2 + 4 ((−a1 − a2 + b1 + b2) c3))ξ

4
k

+
6∑
i=5

ηiξ
i
k +O

(
ξ7k
)
,

(13)

where Ωi and ηi are multi-variate polynomials that depends on the parameters

ai, bi (i = 1, 2, 3) and cj (j = 2, 3, 4, 5). For the error equation in (13) to be of order

6, the coefficients of ξik, i = 3, 4, 5, 6 must be annihilated. By equating the coeffi-

cients to zero and solve for the parameters yields: a2 = −2− a1, a3 = −7− a1, b1 =

−2 + a1, b2 = −a1 and b3 = −6 − a1. Consequently, the error equation in (13)

reduces to:

xk+1 = δ + c22 (−6c2c3 + c4) ξ
6
k +O

(
ξ7k
)
. (14)

The error equation (14) implies that the CO of the modified DNM in (3) is 6. □

Remark 2.1. When a2 = −2 − a1, a3 = −7 − a1, b1 = −2 + a1, b2 = −a1 and

b3 = −6 − a1 in the IM (3), its convergence is guaranteed and the corresponding
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iterative structure becomes a one-parameter family of the form:

xk+1 = xk −
ψ (xk)

ψ′ (xk)
− ψ′ (yk)

ψ′ (xk)
G (s, u) ; (15)

G (s, u) =
1 +

[
a1 − (2 + a1)

ψ′(yk)
ψ′(xk)

]
ψ(yk)
ψ(xk)

−
[
(2 + a1) + (7 + a1)

ψ′(yk)
ψ′(xk)

] (
ψ(yk)
ψ(xk)

)2
1 +

[
(a1 − 2)− a1

ψ′(yk)
ψ′(xk)

]
ψ(yk)
ψ(xk)

−
[
a1 + (6 + a1)

ψ′(yk)
ψ′(xk)

] (
ψ(yk)
ψ(xk)

)2
(16)

Since (15) has CO six requiring evaluation of four distinct functions in one com-

plete iteration cycle, for any concrete member of it will have EI of 1.5651. This is

higher than the EI of the DNM (2).

Remark 2.2. For a concrete member of (15), a1 is assigned any real value in R.

For instance, if a1 = 0 the IM denoted as M1 is obtained as:

xk+1 = xk −
ψ (xk)

ψ′ (xk)
− ψ′ (yk)

ψ′ (xk)

1− 2ψ
′(yk)

ψ′(xk)
ψ(yk)
ψ(xk)

−
(
2 + 7ψ

′(yk)
ψ′(xk)

)(
ψ(yk)
ψ(xk)

)2
1− 2ψ

′(yk)
ψ′(xk)

ψ(yk)
ψ(xk)

− 6ψ
′(yk)

ψ′(xk)

(
ψ(yk)
ψ(xk)

)2
 .

(17)

2.2. The Second Family of Power series Based DNM. In this subsection,

a new family of an iterative structure is constructed by replacing the second order

convergent bi-variate power series weight function used in (3) with its variant as

following:

yk = xk −
ψ (xk)

ψ′ (xk)
;

xk+1 = yk −
ψ′ (yk)

ψ′ (yk)
H (s, u) ;

H (s, u) =

(
1 +

1∑
i=0

(a2i+1 + a2i+2s)u
i+1

)
/

(
1 +

1∑
i=0

(b2i + b2i+2s)u
i+1

)
.

(18)

The main objective here, is to determine the parameters ai and bi, {i = 1, 2, 3, 4} so

as the method (17) estimates the solution of NLM with CO six. To achieve this, the

proof of the following theorem is required.

Theorem 2.2. Suppose the scalar function ψ : D ⊂ R → R has a simple

solution δ and is differentiable for at least four times in D and ψ′ (·) ̸= 0. Again, for

a choice of x0 close to δ, the sequence of approximation {xi}i≥0 , (xj ∈ D), produced

by the family of IM in (17) converges to δ with CO six when the conditions on the

parameters ai and bi holds as following: a2 = −6 − a1, a4 = −a3 − 2a1 − 1, b1 =

a1 − 2, b2 = −4− a1 ,b3 = 4 + a3 and b4 = −2− a3 − 2a1.
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Proof. From the Taylor series expansions in (4)-(9), the following is obtained:

1 +
1∑
i=0

(a2i+1 + a2i+2s)u
i+1 = 1 + (a1 + a2) c2ξk

+
(
−2a2c

2
2 + (a3 + a4) c

2
2 + (a1 + a2)

(
−3c22 + 2c3

))
ξ2k

+
(
−6a3c

3
2 − 8a4c

3
2 + 4a3c2c3 + 4a3c2c3 + 4a4c2c3

+ a2
(
20c32 − 17c2c3 + 3c4 + a1

(
8c32 − 10c2c3 + 3c4

))
)ξ3k

+
∑

Ψ1ξ
4
kk +

∑
Ψ2ξ

6
kk +O

(
ξ7k
)

(19)

and

1 +
1∑
i=0

(b2i+1 + b2i+2s)u
i+1 = 1 + (b1 + b2) c2ξk

+
(
−2b2c

2
2 + (b3 + b4) c

2
2 + (b1 + b2)

(
−3c22 + 2c3

))
ξ2k

+
(
−6b3c

3
2 − 8b4c

3
2 + 4b3c2c3 + 4b3c2c3 + 4b4c2c3

+ b2
(
20c32 − 17c2c3 + 3c4 + b1

(
8c32 − 10c2c3 + 3c4

))
ξ3k

+
∑

Ψ3ξ
4
k +

∑
Ψ4ξ

6
k +O

(
ξ7k
)
.

(20)

The quotient of (18) and (19) is:

H (s, u) = 1 + (a1 + a2 − b1 − b2) c2ξk +
(
−2a2c

2
2 + (a3 + a4) c

2
2 + 3b1c

2
2 + b21c

2
2

+ 5b2c
2
2 + 2b1b2c

2
2 + b22c

2
2 − (a1 + a2) (b1 + b2) c

2
2 − b3c

2
2 − b4c

2
2 − 2b1c3

− 2b2c3 +
(
(a1 + 22)

(
−3c22 + 2c3

))
) +

6∑
m=3

Φmξ
m
k +O

(
ξ7k
)
,

(21)

where Ψi, {i = 1, 2, 3, 4} ,Φm, {m = 3, 4, 5} are multivariate polynomial that depends

on cj for {2 ≤ j ≤ 6} and the parameters ai, bi for {1 ≤ i ≤ 4}.
Substitute (6), (9), and (20) into the second step of (17), correspond to the error

equation below:

xk+1 =δ −
(
(a1 + a2 − b1 − b2) c

2
2ξ

3
k

− c2
((
1− a3 − a4 − 5b1 − b21 − 7b2 − 2b1b2 − b22 + a1 (5 + b1 + b2)

+ a2 (7 + b1 + b2) + b3 + b4c
2
2 + 4 ((−a1 − a2 + b1 + b2) c3))ξ

4
k

+
6∑
i=5

Γiξ
i
k +O

(
ξ7k
)
;

(22)
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where Γi are multi-variable polynomial expressed in cj for {2 ≤ j ≤ 6} and the

parameters ai, bi for {1 ≤ i ≤ 4}. It is required that the coefficient of the errors ξik
for 3 ≤ i ≤ 5 vanish if the IM (21) is to converge to δ with order six. This is

achievable when all the coefficient of ξik are set to zero. When solved in terms of

a1 and a3, the following relations are obtain: a2 = −6− a1, a4 = a3 − 2a1 − 1, b1 =

a1 − 2, b2 = −4 − a1, b3 = a3 + 4, b4 = −2 − a3 − 2a1. When these relations are

substituted in (21), the corresponding error equation is obtained as:

xk+1 = δ + c22c4ξ
6
k +O

(
ξ6k
)
. (23)

This completes the proof.

□

Remark 2.3. The substitution of the parameters (ai and bi) relations : a2 =

−6−a1, a4 = −a3−2a1−1, b1 = a1−2, b2 = −4−a1 ,b3 = 4+a3 and b4 = −2−a3−2a1
into (17) results to the family of two parameter Iterative structure:



xk+1 = xk −
ψ (xk)

ψ′ (xk)
− ψ′ (yk)

ψ′ (xk)
H (s, u) ;

H (s, u) =

1 +

[
a1 − (6 + a1)

ψ′(yk)

ψ′(xk)

]
ψ(yk)

ψ(xk)

+

[
a3 − (a3 + 2a1 − 1)

ψ′(yk)

ψ′(xk)

](
ψ(yk)

ψ(xk)

)2

1 +

[
(a1 − 2)− (a1 + 4)

ψ′(yk)

ψ′(xk)

]
ψ(yk)

ψ(xk)

+

[
(a3 + 4)− (a3 + 2a1 + 2)

ψ′(yk)

ψ′(xk)

](
ψ(yk)

ψ(xk)

)2

.

(24)

The iterative structure (23) requires evaluation of four different functions in a com-

plete cycle. Consequently, its EI is 1.5681.

Remark 2.4. For a1 = 1 and a3 = −4, a concrete member of (23) denoted M2

is obtained as:


xk+1 = xk −

ψ (xk)

ψ′ (xk)
− ψ′ (yk)

ψ′ (xk)
H (s, u) ;

H (s, u) =
1 +

[
1− 7ψ

′(yk)
ψ′(xk)

]
ψ(yk)
ψ(xk)

−
[
4− 3ψ

′(yk)
ψ′(xk)

] (
ψ(yk)
ψ(xk)

)2
1−

[
1 + 5ψ

′(yk)
ψ′(xk)

]
ψ(yk)
ψ(xk)

.

(25)
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3. Numerical Implementation

This section presents the computational implementation of the developed methods

on some real life problems expressed in NLM. To appreciate the developed meth-

ods effectiveness, their computational results are compared with the DNM (2) and

method developed in Lee and Kim [6] put forward as:


xk+1 = xk −

ψ (xk)

ψ′ (xk)
− ψ′ (yk)

ψ′ (xk)
M (s, u) ;

M (s, u) = 1 + 2

[
1− ψ′(yk)

ψ′(xk)

]
ψ(yk)

ψ(xk)
−
[
1 + 2

ψ′(yk)

ψ′(xk)

](
ψ(yk)

ψ(xk)

)2

.

.(26)

The MAPLE 2017 software environment was used to write and execute all computa-

tion programs for the developed methods and methods compared. The error bound

and precision digits used are ϵ = 10−200 and 2000 significant figures respectively. For

comparison, the number of iterations required by method to achieve convergence N ,

residual errors |ψ (xi)| and computational order of convergence ρcoc in [11] given as:

ρcoc =
log10 |ψ (xk+1)| / |ψ (xk)|
log10 |ψ (xk)| / |ψ (xk−1)|

. (27)

were used. The following test problems ψi (x) = 0 also used in ([8], [9], [13]) are

utilised for computational test.

Example 3.1. (Projectile motion [13])

ψ1 (x) = x3 − 9x+ 1, x0 = 2.5, δ = 2.9428 . . ..

Example 3.2. (Pollutant Concentration [13])

ψ2 (x) = 2x− lnx− 7, x0 = 4.0 , δ = 4.2199 . . ..

Example 3.3. (Anti-symmetric buckling [13])

ψ3(x) = ex + x− 20 , x0 = 2.0 , δ = 2.842 . . ..

Example 3.4. (Mass of a Jumper [13])

ψ4(x) = sinx− x+ 1, x0 = −1.0 δ = 1.9345 . . ..

Example 3.5. (Colebrook-White equation [8])

ψ5(x) =
√

1
f
+ 2log10

(
ϵ/D
3.7

+ 2.51
R
√
f

)
, using ϵ/D = 10−4, R = 105,

x0 = 0.002 δ = 0.0041 . . .

Example 3.6. (Population growth [9])

ψ6(x) = 1586000− 435000
x

(ex − 1)− 1000000ex, x0 = 0.5 δ = 0.1173 . . .

Example 3.7. (Van der Waals equation [13])

ψ7(x) = 0.986x3 − 5.181x2 + 9.067x− 5.289, x0 = 2.0 δ = 1.9298 . . .
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Example 3.8. (Reactor concentration [9]

ψ9(x) = −0.75e−0.05x + 1, x0 = 1.0 δ = −5.753 . . .

The computational results of the developed and compared methods on the tested

problems are presented in Table 1. Observe that the developed methods solved

all the test problems with computational CO that agrees with the theoretical CO

established in section 2. This is evidence in the last column of Table 1. In addition,

the residual errors |ψ (xi)| obtained from the test problems using M1 and M2 are in

most cases smaller than that of the compared methods.

4. Conclusion

This manuscript put forward two families of IM for estimating the solution of non-

linear models. The methods are modification of the DNM and designed by the

introduction of weight functions G (s, u) and H (s, u) that are quotients of two sec-

ond order bi-variate power series. The theoretical and computational analysis done

on both methods confirmed that they are of CO six requiring same number of func-

tion evaluation as the DNM. Further, the computational test and comparison shows

that the methods developed here in are effective for solving NLM.
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Table 1. Methods results comparison for models ψ1 − ψ8.

Methods N |ψ (x1)| |ψ (x2)| |ψ (x3)| |ψ (x4)| |ψ (x5)| ρcoc

DNM 5 2.0e− 1 4.5e− 8 1.1e− 34 4.7e− 141 1.4e− 566 4.0

LSM 4 8.0e− 1 6.1e− 8 1.7e− 50 8.4e− 306 - 6.1

M1 4 2.7e− 1 1.1e− 11 5.9e− 74 1.5e− 447 - 6.0

M2 4 9.2e− 3 1.1e− 23 3.3e− 170 8.6e− 1196 - 7.0

DNM 4 1.9e− 8 1.1e− 37 9.4e− 155 5.7e− 623 - 4.0

LSM 3 5.8e− 11 4.8e− 70 1.5e− 424 - - 6.1

M1 3 4.5e− 11 8.6e− 71 4.4e− 429 - - 6.0

M2 3 2.8e− 11 3.4e− 72 1.1e− 437 - - 6.1

DNM 6 1.4 5.8e− 5 2.0e− 22 2.9e− 92 1.2e− 371 4.0

LSM 5 19.82 1.2e− 1 3.5e− 13 1.7e− 82 2.4e− 498 6.1

M1 4 1.32 1.7e− 7 1.3e− 48 2.2e− 295 - 6.2

M2 4 5.3e− 2 9.7e− 17 3.8e− 105 1.3e− 635 - 6.1

DNM 5 1.3e− 1 3.0e− 6 1.4e− 24 5.8e− 98 1.9e− 391 4.0

LSM 5 3.4 3.1e− 4 1.5e− 23 2.3e− 134 2.4e− 834 6.0

M1 5 7.8e− 1 7.6e− 5 3.1e− 28 1.5e− 168 1.8e− 1010 6.0

M2 4 3.7e− 1 6.8e− 8 7.4e− 47 1.2e− 280 - 6.0

DNM 5 4.3e− 1 1.8e− 5 6.4e− 23 9.4e− 93 4.4e− 372 4.0

LSM 4 1.8e− 1 5.7e− 10 6.9e− 61 2.1e− 366 - 6.0

M1 5 1.42 5.1e− 4 3.6e− 25 4.8e− 152 2.7e− 913 6.0

M2 4 1.2e− 1 2.0e− 11 3.9e− 70 1.9e− 422 - 6.0

DNM 5 2408.6 1.4e− 6 1.6e− 43 2.7e− 191 2.3e− 782 4.1

LSM 4 341.8 6.6e− 17 3.3e− 129 5.1e− 803 - 6.2

M1 4 183.3 7.2e− 19 2.5e− 141 5.0e− 876 - 6.2

M2 4 26.0 5.6e− 25 5.4e− 179 4.6e− 1103 - 6.2

DNM 5 1.6e− 4 2.2e− 10 8.4e− 34 1.7e− 127 3.3e− 502 4.0

LSM 4 3.2e− 6 3.8e− 24 9.2e− 132 1.9e− 777 - 5.9

M1 4 6.3e− 5 1.2e− 15 7.7e− 80 4.2e− 465 - 5.8

M2 4 9.6e− 6 1.5e− 24 4.1e− 156 4.0e− 1077 - 6.9

DNM 5 2.0e− 3 2.0e− 12 2.1e− 48 2.4e− 192 3.8e− 768 4.0

LSM 4 1.0e− 3 3.0e− 19 1.9e− 112 1.2e− 671 - 6.0

M1 4 6.5e− 4 8.5e− 21 4.5e− 122 9.0e− 730 - 6.0

M2 4 1.7e− 5 2.7e− 31 4.0e− 186 4.0e− 1115 - 6.0
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