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Stability analysis of transmitter receptors model
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Abstract. The Jumarie fractional-order transmitter receptors model is discussed

in this paper. Transmitter receptors can be found in a variety of states, including

accumulated, freed, combined with receptors, and recycled for storage. For such

a system, a collection of equations is proposed and analyzed. We considered

the solution’s asymptotically stability and discussed the physiological effect of

transmitter receptor transport in a synaptic chasm in the presence of receptors

and transporters with different kinetic properties under these limited conditions.

1. Introduction

Synaptic transmission has been thoroughly studied for many years [2, 3, 4, 6],

and the roles of various transmitters, as well as some of the pre and post synap-

tic events, are well established. Various publications describe the introduction of

transmitter receptors kinetics with a mathematical foundation ([9, 13]). In bio-

chemical systems, ordinary differential equations are used to describe the dynamics

of transmitter receptor reactions. The use of fractional -order differential equations

to model biological systems has more advantages than classical order mathemati-

cal modelling. The fractional order differential equations (FODEs) model is more

consistent with biological phenomena than the integer order differential equations

model [12].

We discussed the physiological effect of the transport of the transmitter receptors

ACh (acetylcholine) in synaptic cleft in the presence of a finite number of receptors

and transporters with different kinetic properties under certain limited conditions

in this article.
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2. Basic functions of fractional calculus

The gamma function and beta function are fundamental mathematical methods

in fractional calculus for understanding the origins of its quantitative challenges.

Definition 2.1. [8] The integral Gamma(z) determines the gamma function.

Γ(z) =

∞∫
0

e−ttz−1dt, Re(z) > 0 (1)

which is the second-kind Euler’s integral and converges in the right half of the

complex plane Re z > 0.

Definition 2.2. [12] The beta function is defined by the integral b(z, w)

b(z, w) =

1∫
0

tz−1(1− t)w−1dt, Re(z) > 0, Re(w) > 0 (2)

which is the first-kind Euler’s integral.

The Mittag-Leffler function is very important in fractional calculus research.

Definition 2.3. [8] The classical Mittag-Leffler function for a single parameter.

Ea(z) =
∞∑
j=0

zj

Γ(aj + 1)
, z ∈ C, Re(a) > 0 (3)

The series expansion of the Mittag-Leffler function with two parameters alpha, beta

is as follows [12].

Ea,b(z) =
∞∑
j=0

zj

Γ(aj + b)
, (a > 0, b > 0) (4)

3. Fractional Derivative

It is necessary to use an appropriate definition of the fractional derivative when

analyzing the dynamical behavior of a fractional system.Indeed, several definitions

of the fractional-order derivative, including Grunwald-Letnikov, Riemann-Liouville,

Weyl, Riesz, and the Caputo[12] representation, are not unique.

Let L1 = L1[a, b] be the class of Lebesgue integrable functions on [a,b], a < b < ∞.

Definition 3.1. The fractional integral (or the Riemann-Liouville integral) of

order p ∈ R+ of the function f(t), t > 0 (f : R+ → R) is defined by [13]

Ipax(t) =
1

Γ(p)

∫ t

a

(t− s)p−1x(s)ds, t > a (5)
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The fractional derivative of f(t) of order π(n− 1, n) can be defined in two (non-

equivalent) cases:

(i)The fractional derivative of Riemann-Liouville: Take the fractional integral of

order (n− p), then the nth derivative as follows:

∆p
⋆f(t) = ∆n

⋆I
n−p
a f(t), ∆n

⋆ =
dn

dtn
, n = 1, 2... (6)

(ii) Caputo’s fractional derivative is as follows: take the nth derivative, and then a

fractional integral of order (n− p).

∆pf(t) = In−p
a ∆n

⋆f(t), n = 1, 2, 3... (7)

4. System of linear fractional differential equations

Consider the system of fractional-order differential equations.{
J∆p[x] = ax+ by
J∆p[y] = cx+ dy

(8)

Here, a, b, c, and dare constants, and the operator JDa is the Jumarie fractional

derivative operator, which we will refer to as such for convenience. J∆p ≡ ∆p

dtp
,

where x and y are functions of t. The above equation system can be modified as{
J∆p[x]− ax− by = 0
J∆p[y]− cx− dy = 0

(9)

It has the solution of the form

x = A1Ep(µ1t
p) +B1Ep(µ2t

p) (10)

y = A2Ep(µ1t
p) +B2Ep(µ2t

p) (11)

where A1, B1 are arbitrary constants and

A2 =
A1(µ1 − d)

c
, B2 =

B1(µ2 − d)

c

5. Equilibrium points and their asymptotic stability

We describe the equilibrium points and asymptotic stability of a fractional order

linear system from [1]. Consider the system and π(0, 1).{
∆p

⋆x(t) = f1(x, y)

∆p
⋆y(t) = f2(x, y)

(12)
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with initial values x1(0) = x0, y1(0) = y0.

To assess equilibrium points, let

∆p
⋆x(t) = 0 ⇒ f1(x

eq, yeq) = 0

∆p
⋆y(t) = 0 ⇒ f2(x

eq, yeq) = 0

To assess asymptotic stability, let

x(t) = xeq + ϵ1(t)

y(t) = yeq + ϵ2(t)

then

∆p
⋆(x

eq + ϵ1) = f1(x
eq + ϵ1, y

eq + ϵ2)

∆p
⋆(y

eq + ϵ2) = f2(x
eq + ϵ1, y

eq + ϵ2)

which implies that

∆p
⋆ϵi(t) = fi(x

eq + ϵ1, y
eq + ϵ2), i = 1, 2

but

fi(x
eq + ϵ1, y

eq + ϵ2) ≃ fi(x
eq, yeq) +

∂fi
∂x

∣∣
eq
ϵ1 +

∂fi
∂y

∣∣
eq
ϵ2 + ...

⇒ fi(x
eq + ϵ1, y

eq + ϵ2) ≃ ∂fi
∂x

∣∣
eq
ϵ1 +

∂fi
∂y

∣∣
eq
ϵ2

where fi(x
eq, yeq) = 0, then

∆p
⋆ϵi(t) ≃

∂fi
∂x

∣∣
eq
ϵ1 +

∂fi
∂y

∣∣
eq
ϵ2

and we get the system

∆p
⋆ϵ = Aϵ (13)

with the initial values ϵ1(0) = x(0)− xeq and ϵ2(0) = y(0)− yeq,

where

Aϵ =

[
ϵ1
ϵ2

]
, A =


∂f1
∂x

∣∣
eq

∂f1
∂y

∣∣
eq

∂f2
∂x

∣∣
eq

∂f2
∂y

∣∣
eq


We have B−1AB = C, where C is a diagonal matrix of A given by

C =

[
µ1 0

0 µ2

]
where µ1and µ2 are the eigen values of A and B is the eigenvalue vectors of A, then

AB = BC, A = BCB−1,

which implies that

∆p
⋆ϵ = (BCB−1)ϵ, ∆p

⋆(B
−1ϵ) = C(B−1ϵ),
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then

∆p
⋆η = Cη, η = B−1ϵ, (14)

η =

[
η1
η2

]
,

i.e.

∆p
⋆η1 = µ1η1, (15)

∆p
⋆η2 = µ2η2 (16)

Mittag-Leffler functions[5] provide the solution to Equations15 - 16.

η1(t) =
∞∑
n=0

(µ1)
ntnp

Γ(np+ 1)
η1(0) = Ep(µ1t

p)η1(0), (17)

η2(t) =
∞∑
n=0

(µ2)
ntnp

Γ(np+ 1)
η2(0) = Ep(µ2t

p)η2(0) (18)

Using the result of Matignon [11] then, if |arg(τ1)| > pπ/2 and |arg(τ2)| > pπ/2

then η1(t), η2(t) are decreasing and then ϵ1(t), ϵ2(t) are decreasing.

If both eigenvalues of the matrix A are negative (|arg(τ1)| > pπ/2, |arg(τ2)| >
pπ/2), the equilibrium point (xeq

1 , xeq
2 ) is locally asymptotically stable.

6. The fractional order model

The kinetics of those reactive systems can be accurately represented by using

fractional calculus, which are similar to those obtained by the law of mass action

[7].

Because the relationship between instantaneous end-plate current and voltage is

linear, the end-plate current is proportional to the end-plate conductance for a fixed

voltage. As a result, rather than studying the end plate current, the end plate

conductance is sufficient. But since end plate conductance is proportional to ACh

concentration, we focus on ACh kinetics in the synaptic cleft. We assume that ACh

reacts enzymatically with its receptor, R, as shown below.

ACh+R ⇌j1
[j2]

ACh.R ⇌µ
[τ ] ACh.R⋆

and that the ACh receptor complex only conducts current when it is in the open

state ACh.R⋆. The concentrations of the reactants and products are denoted by

lower case letters c = [ACh], y = [ACh.R], x = [ACh.R⋆], where [ ] denotes the

concentration of reactants, and it follows from the law of mass action that
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dx

dt
= −τx+ µy (19)

dy

dt
= τx+ j1c(N − x− y)− (µ+ j2)y (20)

dc

dt
= f(t)− jec− j1c(N − x− y) + j2y (21)

where N (the total concentration of ACh receptor) is assumed to be conserved and

ACh decays at the rate −je by a simple first order process. The rate of ACh forma-

tion is assumed to be some given function of f , and the post synaptic conductance

is assumed to be proportional to f(t).

Model equations in dimensional form can be converted to non-dimensional equations

by substituting X = x
N
, Y = y

N
, C = j1c

j2
and τ = τt, then we get,

dX

dτ
= −X +

µ

τ
Y (22)

ϵ
dY

dτ
= ϵX + C(1−X − Y )− (ϵ

µ

τ
+ 1)Y (23)

ϵ
dC

dτ
= ϵF (τ)− je

j2
C − N

J
C(1−X − Y ) +

N

J
Y (24)

where ϵ =
τ

j2
<< 1 , J =

j2
j1
, F (τ) =

f(t)

τJ
and the rate −jeby a simple first order process

Now we look at the fractional order in the Magleby [10] model. The new system is

described by the fractional differential equations listed below

dγX

dτ γ
= −X +

µ

τ
Y (25)

ϵ
dγY

dτ γ
= ϵX + C(1−X − Y )− (ϵ

µ

τ
+ 1)Y (26)

ϵ
dγC

dτ γ
= ϵF (τ)− je

j2
C − N

J
C(1−X − Y ) +

N

J
Y (27)

γ is a parameter describing the order of the fractional time derivative in Caputo

sense and 0 < γ < 1.
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7. Stability analysis of the Model

The equations (26) and(27) are non autonomous simultaneous differential equa-

tions. When f(t) (the rate of ACh formation) equals zero and N(the total concen-

tration of ACh) equals x+ y, the original Magleby modelled equations are reduced

to fractional order linear autonomous simultaneous equations as follows:

dγx

dtγ
= −τx+ µy (28)

dγy

dtγ
= τx− (b+ j2)y (29)

dγc

dtγ
= −je + j2y (30)

Equations (28 - 30) are linear autonomous system of equations, so we can use phase

plane analysing them. Equation (28) and (29) are coupled and independent of c.

Here x = 0, y = 0, c = 0 is the critical point of the system.

Consider the equations (28) and (29).

Then its characteristic equation is as follows:

τ 2 + (τ + b+ j2)τ + τj2 = 0... (31)

and its eigenvalues values are

τ1 =
−(τ + µ+ j2) +

√
(τ + µ+ j2)2 − 4τj2
2

and

τ2 =
−(τ + µ+ j2)−

√
(τ + µ+ j2)2 − 4τj2
2

A sufficient condition for the local asymptotic stability of the equilibrium point

(xeq
1 , xeq

2 ) = (0, 0) is |arg(τ1)| > γπ/2 and |arg(τ2)| > γπ/2.

In the special case a = 1.5, b = 1.5 and j2 = 4.5 we get the system is asymptotically

stable.

8. Conclusion

In this paper, we demonstrated that the critical point of a fractional order system

is the same as its integer order counterpart. For a = 1.5, b = 1.5, and j2 = 4.5 in

this transmitter receptors kinetic model, the system is asymptotically stable, and

we can conclude that fractional-order differential equations are at least as stable as

their integer order counterpart.
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