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Common fixed point results for w—compatible and
w—weakly compatible maps in modular metric
spaces

Ljiljana Paunovié¢, Parveen Kumar*, Savita Malik, and Manoj Kumar

ABSTRACT. The aim of this paper is to prove a common fixed point theorem
for two pairs of w-compatible and w-weakly compatible maps for extending and
generalizing the results of Murthy and Prasad [13] in modular metric spaces. The
main result is also illustrated by an example to demonstrate the degree of validity
of our hypothesis.

1. Introduction

The metric fixed point theory is very important and useful in mathematics. It can
be applied in various branches of mathematics, variational inequalities optimization
and approximation theory. Polish mathematician Banach observed the first metric
fixed point results in the setting of complete normed spaces. In 1976, Jungck [9]
proved a common fixed point theorem for commuting maps generalizing the Banach’s
fixed point theorem. The self-maps f and g of a set {2 are called commutative if
fgu = gfu for all u € Q. After that Sessa [17] introduced the notion of weakly
commuting maps. "Let f and g be mappings from a (€2, d) metric space into itself.
The mappings f and g are said to be weakly commuting if d(fgu, gfu) < d(fu, gu)
for each w in Q.” Further, Jungck [10] introduced more generalized commutativity,
the so-called compatibility, which is more general than that of weak commutativity.
"Let (€2, d) be a metric space and f, g : Q — Q. The mappings f and g are said to be
compatible if lim,, 1 d (fgu,, gfu,) = 0, whenever {u,} is a sequence in X such
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that lim,, . fx, = lim,, . gx, = t for some t € €2.” After then in 1998, Jungck
and Rhoades [11] introduced the notion of weakly compatible. ”A pair of maps f
and ¢ is called weakly compatible pair if they commute at coincidence points that
is, if fu = gu implies fgu = gfu” and showed that compatible maps are weakly
compatible but converse need not be true. On the other hand, the notion of modular
metric space was introduced by Chistyakov with the time parameter A (say) and
his purpose was to define the notion of a modular on an arbitrary set, develop the
theory of metric spaces generated by modulars, called modular metric spaces in [4],
[6],[7]. This is a generalization of the classical modular spaces like Orlicz spaces (see
[12]). In recent years, there has been a great interest in the study of the fixed point
property in modular metric spaces (see [1, 2, 16]). For more details on modular
metric fixed point theory, the reader may consult the books [3, 8, 12, 14, 15].
Throughout this paper N will denote the set of natural numbers. Let ¢ be a
nonempty set. Throughout this paper, for a function w : (0,00) x Q x Q — [0, c0),
we write wy(u,v) = w(A, u,v) for all A > 0 and u,v € Q.

Definition 1.1. [4] Let © be a nonempty set. A function w : (0,00) x 2 x Q —
[0,00) is said to be a metric modular on Q if it satisfies, for all u,v,w € Q, the
following condition:

(1) wa(u,v) =0 for all A > 0 if and only if u = v,

(2) wa(u,v) = wy(v,u) for all A > 0,

(3) warpu(w,v) <wy(u,w) + wy,(w,v) for all A, > 0.

If instead of (1) we have only the condition (1°) wy(u,u) = 0 for all, u € ¥, A > 0
then w is said to be a pseudo modular (metric) on 2. An important property of
the (metric) pseudo modular on set 2 is that the mapping A — wy(u,v) is non
increasing for all u,v € €.

Definition 1.2. [4] Let w is a pseudo modular on Q. Fixed ug € Q. The set
Q, = Q, (ug) = {u € Q:wy (uuup) = 0 as A = +oo} is said to be a modular metric
space (around ).

Definition 1.3. [4] Let Q, be a modular metric space.

(1) The sequence {u,} in €, is said to be w-convergent to u € €, if and
only if there exists a number A > 0, possibly depending on (u,) and u, such that
limy, 400 Wi (g, uw) = 0.

(2) The sequence {u,} in €}, is said to be w-Cauchy if there exists A > 0, possibly
depending on the sequence, such that wy (um,u,) = 0 as m,n — +o0.

(3) A subset H of €, is said to be w-complete if any w-Cauchy sequence in H is
a convergent sequence and its limit is in H.

Definition 1.4. [5] Let w be a metric modular on © and €2, be a modular metric
space induced by w. If €, is a w complete modular metric space and T : €, — €1,
be an arbitrary mapping T is called a contraction if for each u,v € €, and for all
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A > 0 there exists 0 < o < 1 such that
wr(Tu, Tv) < owx(u,v).

Now we introduce various type of minimal mappings in modular metric spaces
as follow:

Definition 1.5. Two self-maps f and g of a set €2 are called

(i) w-commutative if fgu = gfu for all u € Q.

(ii) w-weakly commuting if wy(fgu, gfu) < wy(fu, gu) for each w in €.

(iii) w-compatible if lim,, o wx (fgUun, gfu,) = 0, whenever {u,} is a sequence
in €2 such that lim, . fu, = lim, . gu, =t for some t €  and A > 0.

(iv) w-weakly compatible pair if they commute at coincidence points that is, if

fu = gu implies fgu = gfu.

Remark 1.1. Clearly, 2-commuting maps are Q-weakly commuting and €)-
weakly commuting maps are 2-compatible.

Example 1.6. Let Q, = [—00, +00) and wy(u,v) = (1/\)|u — v|. Define f, g :
Qu — Q, as f(u) = v* and g(u) = u. Then take u, = £,n = 1,2,... we have,
lim,, 1 oo # = limn_>+00% =0 and lim,,_, ;o wy (#, #) =0 for A > 0. Then (f,g)

is w-compatible at u = 0.

Example 1.7. Let Q = [0,2] be equipped with the modular metric space
wi(u,v) = (1/X)|u—v|. Define f,g:[0,2] = [0,2] by f(u) =% and g(u) = %.
Then (f, g) is weakly w-compatible at u = 0.

Lemma 1.2. If the pair (f,g) of self-maps on the Modular metric space (£2y,w)
18 w-compatible, then it is weakly w-compatible. The converse does not hold.

ProoOF. Let fu = gu for some u € €2. We have to prove that fgu = gfu.
Put u,, = u for every n € N. We have fu,, gu, implies fu = gu then, since the pair

(f,g) is compatible, we have wy (fgun, gfun) = wr(fgu, gfu) = 0.
Hence, wy(fgu, gfu) = 0 that is, fgu = gfu. O

Example 1.8. Let Q2 = [0,2] be equipped with the modular metric spaces
wi(u,v) = (1/A)|u — v|. Define f, g :1[0,2] — [0,2] by
2u if 0<ux<l1
2—uw if 0<u<l1
flu) = and g(u) = wu if 1<u<2 u#j
2 if 1<u<?2
2 if
For n € N such that n > 4, put u,, = §+% € ), we have fu,, = 2—(% +
% and gu,, = 2 (% + %) = %—1—%. We obtained that fu,, gu, — %.Now W (fun, %) =
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(1/M) |3 — £ — 3| and wy (gun, 3) = (1/A) |3 + 2 — 3| tends to 0 as n tends to +oo.

wx (fgun, gfun) =(1/7) ‘f (% + %) s (% _ % ‘
1 4 2

—(1/3)|-

+ |~
S o
Wi

|
3=

=(1/X)

+
ol

|
3=

+ + | = el
= o 3w

B~ QO wlik

=(1/3)
=(1/3)

does not tends to 0 as n tend to +oo. That is, the pair (f,g) is not compatible.
Since f3 = g3 and f2 = g2, we have fg3 = gf5 and fg2 = gf2.

=] ©

2. Main Results

In 2013, Murthy and Prasad [13] proved the following result:
"Let T be a self-map of a complete metric space €2 satisfying
1+ pwi(u, v)] wi(Tu, Tv) <
2 wiu, Tu)wi (v, Tv) + wi(u, Tu)wi(v, Tv)]
pmax wi (u, Tuw)ws(u, To)w (v, Tu), + m(u,v) — dm(u,v).
wa(u, Tv)wy (v, Tu)w (v, Tv)

_ w%(uv U)a w1 (U, Tu)wl (U7 TU)7 Wa (u7 Tv)wl (U7 TU),
Where, m(u, v) = max{ L [wr (u, Tw)ws (u, Tv) + wi (v, Tw)wy (v, Tv)] [

2
p > 0 is a real number and @ : [0, +00) — [0,+00) is a continuous function with
O(t) = 0 if and only if ¢ = 0 and @(¢) > 0 for each ¢t > 0. Then 7 has a unique fixed
point in €.”
Now we extend and generalized the above result in setting of modular metric spaces
as follows:

Theorem 2.1. Let (Q,,w) be a complete modular metric space. Let A, B, S and
T be self- mappings of € into itself satisfying the following conditions:
(€) T(Q)C AQ),5() < BO)
(Cy) If one of the following conditions is satisfied:
(i) Either A or S is continuous, the pair (A, S) is w-compatible, the pair (B,T) is
w-weakly compatible;
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(ii) Either B or T is continuous, the pair (B,T) is w-compatible, the pair (A, S) is
w-weakly compatible.
(C3) [+ pwi(Au, Bu)]wi(Su, Tv) <

1 [wi(Au, Su)wi (Bv, Tv) + wi(Au, Su)wi(Bv, Tv)]
pmax wi (Au, Su)ws (Au, Tv)w; (Bv, Su), +
wa(Au, Tv)wy (Bv, Su)w, (Bv, Tv)

m(Au, Bv) — 0m(Au, Bv),
where,
(C4)
2
B wi(Au, Bv), w; (Au, Su)w (Bv, Tv), ws(Au, Tv)w, (Bv, Su),
m(Au, Bv) = max{ 1 lwi(Au, Su)ws (Au, Tv) + wi (Bv, Su)wi (Bv, Tv)] ’

p > 0 is a real number and 0 : [0,+00) — [0,+00) is a continuous function with
O(t) =0 if and only if t = 0 and O(t) > 0 for each t > 0. Then A, B,S and T have
a unique common fixed point in €),.

PROOF. Let uy be an arbitrary point in 2. Choose a point u; € §2 such that
vg = Sug = Buy. For the point u;, we can choose a point uy, € {2 such that
v = Tup = Aug as T(Q2) C A(Q). Continuing this process, we obtain a sequence
{vn} in © such that vy, = Sug, = Bug,s1 and vg, 11 = Tugpy1 = Augyyo. First, we
show that {v,} is a Cauchy sequence in €.

There are two cases:

Case 1. If n is even, then from (C5) by taking u = ug,, v = ug,+; in inequality
(C3), and for brevity, we write aw, = w; (Van, Voni1)-

First, we prove that {as,} is non increasing sequence and converges to zero.

[1 + Pw1 (AUQ,-L, BU2n+1)] w% (SUQn, TU2n+1> S
1 [ Wi (Augn, Sugn) wi (Bugnyr, Tugni1) +
2| wy (Augy, Susn,) w? (Bugn i1, Tusn 1)
wy (Augy, Sugy,) wa (A, Tusny1) wi (Bugpi1, Stan) ,
wa (Augy, Tugpi1) wi (Bugpy1, Suen) wi (Bugpy1, Tuant1)
(AUQTL, Bu2n+1) — @ (AUQn, Bu2n+1> s

pmax +

where, m (Augy,, Bugy, 1)
w? (Attgy, Bugny1) , w1 (Atgn, Sty ) wy (Bugn i1, Tuony 1),
wo (Atgy,, Tugp 1) wi (Bugyt1, Suoy,)
1| wi (Augn, Sugy) we (Augy, Tuzpi1) + ’
wy (Bugpy1, Stg,) wy (Bugpi1, Tugni1)

= Imax

2
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[1+ pwi (Van—1, Von)] W? (Van, Vang1) <

Uzn 1, V2n) W1 (Von, Vony1) +
w1 UQn lyvzn)w% (Uzn,v2n+1)
w1 U2n 1,U2n)w2 (U2n 1,U2n+1)w1 (?JQn,U2n)
Wa U2n 1,U2n+1)w1 (U2n,v2n)w1 (U2n,112n+1)

1
2

pmax +

m(UZn 17U2n _Q)m U2n 17U2n )

w1 (U2n—17 UQn) , W1 (U2n—1, Uzn) w1 (U2n, U2n+1) s
Wwa (U2n—1> in—i—l) w1 <U2n7 ?JQn) )

1| w1 (V2n—1,v20) Wa (Van—1, Vony1) + ]

2

where, m (vg,_1, V9, ) = max
{ w1 (U2m Uzn) w1 (U2n7 U2n+1)

On using ag, = wq (Va,, V2,+1) in (C3), we have

1 2 2

5| a5, o, + a1 0
1+ pagy—1] a3, < pmaxy{ 2 [ 010 0 n103, |0, +
m (U2n—1’ U2n) - ®m (U2n—17 U2n) )
where,

_ 2 1
m (Van—1, Von) = max{ 51, Q2n—1029, 0, 5 [an—1wa (Van—1, Vant1) + 0] } .
Now using triangular inequality, we have
wa (Vap—1, Vant1) < w1 (Van—1,V2n) + Wi (Van, Vapt1) = Qa1 + oy
_ 2 1
m (Van—1, V2n) = max{ 51, Q2n—102p, 0, 15 [von—1 (Qr2n—1 + Q2y)] } .
If ag,1 < oy, then after simplification, we get
2
1 0, Qo+
2 ;
2 Qon iy,
_|_
0,
0

[1 + pa2n—1] Oé%n S pmax m (U2n—17 U2n) - (Z)m (U2n—17 U2n) )

where,
m (Vap_1,V2) = max { a3, 2,00, 0, 3 [z, (2 + 2,)] }
= a%n [1 + pa?n] a%n < pa%n + a%n - @ (Oé%n)
0<§0 (a%n), which is a contradiction. Hence as, < ag,_1. In a similar way, if n
is odd, then we can obtain ag,;1 < ag,. Therefore, sequence {ay,} is monotone
decreasing sequence which is bounded below by 0. So, there exists » > 1 such that
Qg, — T as n — +00. Suppose r > 0, then from inequality (C3), by putting u = ug,
and v = ug,.1 in (C3), we have
[1 + pwi (Ausgn, Bugyi1)] w? (Stgn, Tusn1) <

1 [ Wi (Augy, Sugn) wi (Bugn 1, Tugni1) +

2| wi (Augy, Sugn) wi (Bugni1, Tugn 1)

wi (Atign, Stan) wa (Atgy,, Tgni1) wi (Bugny1, Stay) |
wa (Atign, TUgpi1) w1 (Bugnir, Ston) wi (Bugnit, TUuzpg1)

m (Augy, Busn 1) — 0m (Augy,, Bug,.1) ,

pmax +

where, m (AU'Qna Bu2n+1)
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w? (Augy,, Bugny1) ;w1 (Atgn, Sty ) wi (Bugn i1, Tuony 1),
wy (Augy, Tugnir) wi (Bugns1, Stan)

wy (Augy,, Sugy,) wa (Augy,, Tugyy 1) + ] '
w1 (Bugni1, Stgn) wi (Bugn i1, TUgn 1)

1

= max
a
[1+ pwi (va2n—1,20)] WF (Van; V2ns1) <
[ w12 (Von—1, Von ) W1 (V2n, Vant1) + 1
w1 (U2n—17 U2n) w12 (U2m Uzn+1) ’
w1 (V2n—1, Van) W2 (Van—1, Vant1) Wi (Von, Van)
Wy (Van—1, Van+1) W1 (Von, Van) Wi (V2n, Vany1)
m (Van_1,V2n) — O0m (Vo _1, vay)
where, m (vg,_1,v9,) =
max { w% (U2n717 U2n> y W1 (U2n717 U2n) w1 (U2n7 U2n+1) y W2 (U2n71, U2n+1) w1 <U2n, U2n) ) }
5 w1 (Van—1, V2n) W2 (Van—1, Vans1) + Wi (Van, Van) W1 (Van, Van1)]

P max

1
2

+
(

2
1| Qp_1Q2nt
2
Qop—1005,

11+ pas,—1] a3, <p maX{ 3 ] ;0,0 }+m (Van—1, Van) —0m (vap—1, v2y)

where,

2
B A5y 1, Qop 1009y, 0,
m <U2n_17 U2n) - { % [a2n—1 (a2n—1 + O@n)] }

Now
2+ r?
[1+ pr]r? < pmax 0, + m (Vam, Vam—1) — Om (Vam, Vam—1).
0
where,

r?, 12,0, 2 2 3 2 2
m (Vop_1, Vap) = max 2 =72 So,[1 + pr]r? < prd3 + 12 — 0 (r?).

Then, 0 (r?) < 0, since r is positive, then by property of (), we get r = 0, we conclude
that lim, 4o a2, = r = 0. Now we show {v,} to be a Cauchy sequence in €.
Suppose we assume that {v,} is not a Cauchy sequence.

For given € > 0, we can find two sequences of positive integers {my} and {n;}
with n, > my > k such that

ws (v (k), vay) > €, w1 (Vm(k)> Vnh—1)) < € and n(k) > m(k) > k (2.1)
Now € < ws (trn(ty, Un(ty) < @2 (Vs V) + 1 (Vg )
Swi (Um(k)avn k—1 ) w1 (v ( (k)—15 Un(k) ) < w1 (Um(k)avn(k—l)) +wi (%(k)—h%(k))

< etws (Un(t)—15 Vn(r)) -

Letting £ — +o00, we get limy_, 4 wo (vm(k),vn(k)) = limg 100 Wy (vm(k),vn(k)) =
€.

Again using triangular inequality, we have

€ < ws (Vmk)s Vn(k)) < Wa (Vme)s Vngy) < w2 (Vn(e)s Ungy1) Fw2 (Vi) Ungey41) - (2.2)
We get

€ — Wy (Un(k), Un(k)+1) < wo (Um(k), Un(k)—i—l) <w (Um(k), Un(k)+1) < wi (vm(k), Un(k)+1)
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< w1 (Vm(k)s Un(ty) + Wi (Unih), Unii+1)

Taking limits as £ — 400, we have

hmk—)—l—oo w1 (Um(k)7 Un(k)—H) = hmk—>+oo ) (Um(k)a Un(k)—i—l) = €. (23)
Now from the triangular inequality, we have

€ < wa (Vmk)s V() < W1 (Vme)s Ve +1) + @1 (V)15 Vn(ry) -

We get

€ — W (Um(lc)a Um(k)+1) < wy ('Um(k)+1> Un(k))

<wi (vn(k),vm(k)q) +wi (Um(k)ﬂ,vm(k)q

< w1 (vn(k),vm(k),l) + W1 (Um(k)fbvm(k)) + Wi (Um(k)a Um(k)+1) :

Letting k — 400, we have limg o, wy (Um(k)H, vn(k)) =€ (2.4)
Again, from the triangular inequality, we have

ws (Vim(k)s V() < Wa (Vneys Un(ry+1) + W1 (Vnge) 41, Vme)) -

We get

w3 (Vm(k)» Un()) < Wa (Vn() Un(i)+1) + @2 (Vm(k)+1, Um)) +

W2 \Um(k)+1, vn(k)-{-l) ws (Um(k)a Un(k:)) — Wy (Un(k)a Un(k)-i—l) — W2 (Um(k)—i-h Um(k))

< weo (Um(k)+1, Un(k)+1) < wy (Um(k)+17vm(k)) + w (Un(k)+17 Um(k)) .

Letting k — 400, we have limy_, o wo (Um(k)-l—la vn(k)+1) = e (2.5)
Since w2 (Um(k)—f—l; Un(k)+1) < wp (Um(k)—f—h Un(k)+1) < w% (Um(k)-‘,-lu Um(k)) +

w% (Um(k)a Un(k)-l—l)

< w% (Um(k)a Un(k)—l—l) < wi (Um(k:)a Um(k)—l) + wi (Um(k)—lu Un(k)—l)

S wi (Um(k)—lavn(k:)) twL (Un(k)—ly Un(k)).

Letting £ — 400, we have limy_, o wy (Um(k)+1> Un(k:)+1) = €. (2.6)
On putting u = wpp) and v = u,p in (Cs), we get

[+ pwr (A, Bun)] @t (St Ttingy) <

W} (Attmey, Sttmey) w1 (Bun(r), Ttngw)) +
Wi (Atm(ry, Stm(ry) Wi (Btingey, Ttin(r))

Wi (Atmrys Stm(ry) wa (Athmry, Ttinry) w1 (Buneys Stmry)
wa (Atmry, Ttnry) w1 (BUnrys Stmr)) w1 (Btngry Tng))

1
2

p max

where,
m (At (), Bungr)) =
Wi (Atmr), Bun)) s w1 (Attmr)s Stimery) w1 (Buingey, Ttin(r))

wa (Atim(ry, Ttnry) w1 (BUn(rys Stm(r))

max ) [ W1 (Aum(k), Sum(k)) W2 (Aum(k),Tun(k)) :|
1 +
wi (Bungry, Stmry) w1 (Bungry, Ttng)

Now
[L+ pwr (Vinge—1, V) -1) ] @3 (Ve V) <
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1 [ wE (Vo)1 Vmn)) W1 (Vnge) -1, V) +
W1 (Vn(k) =15 Um(k)) W7 (Un()—1, Vn(r))
W1 (Vn(k)—15 Vm(k)) @2 (Vi) —15 Unry) @1 (V)1 Vi) ))
w2 (Vi) -1, Vn(k)) W1 (Vn(i)—1, Vm(k)) @1 (Vnk)—15 Un(r)
M (Vi) -1, Un(y—1) = Om (Vmey—1, V1) -
where,
M (Vm(k)-1, Vnry 1)
wWF (Vm(k) 15 Vn(ky-1) > @1 (V)1 Vm(k)) @1 (Unih) 1, Unry)
ws (Vm(k)~15 Un(k)) @1 (VUn(k)-1, Umk)
1 [ w1 (U1, Vi) w2 (Vmiy -1, V) +
W1 (Un()—1, Vi(k) ) W1 (Vn(i) -1, Un(r))
Letting k — 400 and using (2.1)-(2.6), we get
[L+pele? < pmax{ 5[ 04+0],0,0 f+m (V-1 Vaw)-1) = 0m (Vm@m)-1, Vag-1) »
where,
m (vm(k)_l, Un(k)_l) = max{ €2,0, €2, %[O + 0] } =2
Thus {v,} is a Cauchy sequence in 2. Since €2 is complete, there exists, a point w €

P max

= Imax

such that lim,, , ;. v, = w. Now we show that w is the fixed point for maps A, B, S
and T'. It is clear that lim,, , o v, = lim,, s o Sus, = lim,, o Bus,11 =w and
lim, o0 Vo1 = limy, oo TUgp = limy, oy oo Ao, i0 = w.
So, lim,, oo Augy o = limy, oo Tusp = limy, o Bug, 1 = lim, oo Sug, = w.
There are two cases arise:
Case 1. Suppose that S is a continuous, then
lim,, oo SSU2, = limy, s oo SBugyi1 = Swlim, oo ST U, 1 = limy, oo SAU,1 0 =
Sw.
Since the pair (A, S) is compatible, therefore, lim,, . w1 (SAug,io, ASug,i2) =
lim,, o w1 (Sz, ASug,12) = 0. Therefore, lim,,_, o, ASus, 10 = Sw.
Putting u = Sugp, v = Uy in (C3), we get
[1 + pwr (ASUQH, BU2n+1)] wf (SSUQ,“ TU2n+1) S
1 OJ% (ASUQn, SSU2n+2) w1 (BU2n+1, TU2n+1) +
2 w1 (ASUzn, SSUQn) w% (Bu2n+1, Tu2n+1)
w1 (ASUQn, SSUQn) Wa (ASUQn, Tu2n+1) w1 (BU,Qn_H, SSUQn)
W9 (ASUQn, TU2n+1) w1 (Bu2n+17 SSUgn) w1 (BU2n+1, TU2n+1)
m (ASUQn, BU2n+1) - (Z)m (ASUQTL, BUgn_H) s
where,
m (ASugy,, Bug,1)
w12 (ASUQn, Bu2n+1> , W1 (ASUQTL, SSUQn) w1 (BUQn_H, TU2n+1)
W9 (ASUQTL, TU2n+1> w1 (BUQn+1, SSUQn)

1 W1 (ASUQn, SSUQn) wWa (ASUQTL, TU2n+1) +

2 w1 (BU2n+1, SSUQTL) w1 (BU2n+1, Tu2n+1)
Letting n — 400, we get

pmax +

= Imax
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[1 4 pw; (Sw, w)] w?(Sw, w) <
£ [wi(Sw, Sw)w: (w, w)+ wi (Sw, Sw)w? (w, w)
pmax { w1 (Sw, Sw)wa (Sw, w)ws (w, Sw), } + m(Sw,w) — dm(Sw, w),
wa (Sw, w)wy (w, Sw)w; (w, w)
where,
W2 (Sw, w),w; (Sw, Sw)w; (w, w), ws (Sw, w)w; (w, Sw

m(Sw, w) = max{ 1(% [w1 (Sw, é’w)wg(Sw,sz) + Z}l(w(, Sw)wz(w(,w)] ) } '
wi(Sw,w),0,ws(Sw, w)w; (w, Sw),

That is, m(Sw, w) = max { [0+ 0]

} = wi(Sw,w).
Now

[1 4 pw1 (Sz, w)] w?(Sz, w) < w?(Sw,w) — O (W?(Sw,w))

pw?(Sw,w) < —0 (wi(Sw,w)) .

Therefore, Sw = w.

Now putting © = w, v = ug,41 in (C3) and using Sw = w, we have

1+ pw;i (Aw, Bugp 1) w? (Sw, Tugpy 1) <

[ W2 (Aw, Sw)wy (Bugy 1, Tusny1) +

o=

wl(AUJ, SU})W% (Bu2n+17 TU2n+1)
wi (Aw, Sw)ws (Aw, Tugy, 1) wi (Bugni1, Sw)
P! (A’LU, TUan) w1 (BU2n+1, Sw) w1 (Bu2n+17 Tu2n+1>
@m (Awa BU2n+1) )
where,

pmax +m (Aw, Bugy+1)—

m (Aw, Bugyy1)
UJ% (Aw, BU2n+1) y W1 (AUJ, Sw)wl (Bu2n+17 Tu2n+1)

= max y W2 (Aw7 Tu2n+l) w1 (Bu2n+la SUJ) )

3 [wi (Aw, Sw)ws (Aw, Tugns1) + wi (Bugni1, Sw) wi (Bugyi1, Tuzn 1))
Now we have,
[1 + pwi (Aw, w)] wi(w, w) <

% [ w%(va w)wl <w7 UJ) + wl(Aw7 w)w%<w7 UJ) :| )
pmax wi (Aw, w)ws (Aw, w)w (w, w), +m(Aw, w)—0m (Aw,w),
w2 (Ao, )i (19, wYn (10,10)
where,
2

_ WI(AU)?w))wl(Awaw)wl(w?w)7w2(*’4waw)wl(w7w)7
m(Aw, w) = max { L w1 (Aw, w)wy (Aw, w) + wi(w, w)w; (w, w)]
So, 0 < 0+ m(Aw, w) — dm(Aw, w),

2
2
_ wi (Aw, w), 0,0,
Where? m<Aw’ w) o maX{ 1 [Wl (AU% w)WZ(Aw7 w

This implies that 0 < w%(AuQ), w) — 0 (Wi (Aw, w)).

Therefore, Aw = w.

On the other hand, since w = Sw € S(Q) C B(Q) there exists w* € 2 such that
w = Sw = Bw*, then w = Sw = Aw = Bw*.

To prove that Tw* = w.
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This implies that 0 < w?(Aw,w) — 0 (wi(Aw, w)).
Therefore Aw = w.

On the other hand, since w = Sw € S(Q) C B(Q) there exists w* € Q such that
w = Sw = Bw* then w = Sw = Aw = Bw”*.
To prove that Tw* = w.

1+ pwi (Aw, Bw*)]w? (Sw, Tw*) <

L [ wi(Aw, Sw)w, (Bw*, Tw*) +
2w (Aw, Sw)w? (Bw*, Tw*) }
(

priax wi (Aw, Sw)ws (Aw, Tw*) wy (Bw*, Sw) +m (Aw, Bu)=fm (Aw, Bu?),
wy (Aw, Tw*) wy (Bw*, Sw) wy (Bw*, Tw*)
where,
w? (Aw, Bw*) ,w (Aw, Sw)w; (Bw*, Tw*) ,ws (Aw, Tw*)
. wy (Bw*, Sw),
m (Aw, Bu’) = max | wi(Aw, ‘S(Yw)wg (Au)),Tw*) +
2 [ wy (Bw*, Sw) wy (Bw*, Tw*) ]

Now we have
1+ pn 0, )] (1, Tw*) <
3w (w, wen (w0, Tw®) + wy (w, w)e (w, Tw)],
pmax wi(w, w)ws (w, Tw*) w; (w, w), + m(w,w) — dm(w, w)
w2 (U}, Tw*) Wl(wv U))(,dl (’U), TU)*)
2 * *
_ wl(waw)awl(wuw)wl (’U),T’U) ) W2 (w7Tw )Wl(wuw)a
where, m{w, ) = max{ 1 s (10, w)ws (19, T15*) + or (19, wheon (w, Tw)]

2
w? (w, Tw*) < pmax{ 3[04 0],0,0 } +m(w,w) — dm(w,w),
where, m(w, w) = max { 0,0,0,3[0+40] } =0.
We get w? (w, Tw*) < 0.
This implies that w = Tw*. Therefore, Tw* = w = Bw*.
Since the pair (B,T) is weakly compatible, so Tw = T Bw* = BTw* = Buw.
Now we prove that Bw = w. For this putting u = w,v = w in (C3), we have
[1 + pwi (Aw, Bw)] w?(Sw, Tw) <
2 [wi(Aw, Sw)w; (Bw, Tw) 4+ wi (Aw, Sw)wi(Bw, Tw)]
pmax w1 (Aw, Sw)ws(Aw, Tw)w, (Bw, Sw), +
wa(Aw, Tw)w; (Bw, Sw)w; (Bw, Tw)
m(Aw, Bw) — dm(Aw, Bw),
where,
w?(Aw, Bw),
w1 (Aw, Sw)w; (Bw, Tw), wa(Aw, Tw)w; (Bw, Sw),
L | wi(Aw, Sw)ws(Aw, Tw)+

2| w(Bw, Sw)w (Bw, Tw)

m(Aw, Bw) = max

Now
(1 + pwi(w, Bw)] w?(w, Bw) <
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b 2o, won (B, Bu) + e, ) (B, Bu)],

pmax wy (w, w)ws (w, Bw)w; (Bw, w), +
wa(w, Bw)wy (Bw, w)w (Bw, Bw)

m(w, Bw) — dm(w, Bw),

where,

m(w, Bw) = max{ W%(Ul)a Bw),w; (w, w)w; (Bw, Bw), ws(w, Bw)w;, (Bw, w), } .

5 w1 (w, w)we(w, Bw) + wi(Bw, w)w: (Bw, Bw)]

Now

1+ pwi(w, Bw)] w?(w, Bw) <
3 [wi(u, u)w (Bw, Bw) + wi (w, w)wi(Bw, Bw)]

pmax wi (w, w)wa(w, Bw)w; (Bw, w), +

wa(w, Bw)w (Bw, w)w (Bw, Bw)

m(w, Bw) — dm(w, Bw),

where,

w?(w, Bw), wi (w, w)w; (Bw, Bw), ws(w, Bw)w; (Bw, w), }

m(Aw, Bw) = max{ 1wy (w, w)ws(w, Bw) + wi (Bw, w)w (Bw, Bw)]

That is,
1[0 +0],
+ pwi(w, Bw)|wi(w, Bw) < pmax , + m(w, bw) — Im(w, Bw),
1 B 2(w, B 0 B 0 B
0
where,
2
m(Aw, Bw) = max wilw, Buw), O’?Q(w’ Bujur(Bw,w), | _ w?(w, Bw).
310+ 0]
That is,

1+ pw; (w, Bw)] wi(w, Bw) < wi(w, Bw) — 0 (w?(w, Bw)) .
Hence Bw = w.
Therefore, w = Sw = Aw = Tw = Bw.
This implies w is common fixed point of A, B, S and T.
Case 2. Suppose that A is a continuous,
then lim,,_, oo ASUg, = lim,_, ;o0 A%Upio = Aw.
Since the pair (A, S) is compatible, therefore, lim,, o wi (SAusg,, ASuy,) =
limy, 4 oo w1 (Az, SAug,) = 0. Therefore, lim,,_, o, SAus, = Aw.
Putting u = Aug,, v = ug,41 in (C3), we get
(1 + pwi (AAusgy,, Busyy1)] w? (SAug,, Tug,i1) <
1 w% (AAUQn, SAUQn) w1 (BU2n+1, Tu2n+1) +
2 w1 (AAUQn, SAUQn) w% (Bu2n+17 TUQn+1)
w1 (AAUQTL, SAU2n> W9 (AAUQ”, TU2n+1) W1 (Bu2n+1, SAUgn) y
W2 (AAUQn, TUQnJrl) w1 (BU2n+1, SAUQn) W1 (BUQn+1, TU2n+1)
m (AAug,, Bug,1) — 0m (AAug,, Bug,i1) ,
where,

pmax +
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12 (AAUQn, Bu2n+1) s
wi (AAugy,, S Augy,) wy (Bugpir, Tugnir)
m (AAug,, Bug,+1) = max wo (AAug,, Tug, 1) wi (Bugyy1, SAus,),
|i w1 (AAUQn, SAUQn) W9 (AAUQn, TU2n+1) +
w1 (Bugni1, S Augy,) wy Bu2n+17 TU2n+1)
L | wi(Az, Az)w; (w, w)
2 [ wi (Az, Az)w1 w, w)
w1 (Az, Az)ws (Az, w)w (w, Az
wa(Az, w)wi (w, Az)w; (w, w)

1
2

11+ pu(Az, w)] wi(Az, w) < pmax

m(Az, w) — dm(Az, w),
where,

WAz, w),wi (Az, Az)w (w, w), we(Az, w)w; (w, Az),
m(Az,w) = ma"{ 1(5 [w1(>Az, ziz)wg(A)z, @Ej) 4 3]1<w(, Az)wi(w(, )] | } '
That is, m(Aw, w) = max { w}(Az,w),0,ws(Az, w)w; (w, Az), } = wi(Aw,w).
Now [1 + pw; (Az, w)]w?(Az,w) < wi(Az,w) — 0 (wi(Az, w)).

Implies that wy(w, Aw) = 0. Therefore, Aw = w.
Now putting © = w,y = ug,41 in (C3) and using Aw = w, we have
1+ pw; (Aw, Bugy 1)) w? (Sw, Tugny1) < m(Aw, Bv) — Om(Aw, Bv),
where, m (Aw, Bug, 1)
12 (AUJ, Bu2n+1) )
= max wi (Aw, Sw)wy (Bugpi1, Tuony1) , we (Aw, Tugyi 1) wy (Bugpy1, Sw)
% (w1 (Aw, Sw)ws (Aw, Tugn1) + wi (Bugpy1, Sw) wy (Bugni1, Tugni1)]

Now we have .
2

5 [wi(w, Sw)w; (w, w) + wy (w, Sw)w; (w, w)]
[1 4 pw; (w, w)] w?(Sw,w) < pmax w1 (w, Sw)ws (w, w)w (w, Sw),
wa (Aw, w)w; (w, Sw)w; (w, w)
m(w,w) — dm(w, w).
wi(w, w), wy (w, Sw)w; (w, w), we(w, w)w; (w, Sw)
where, m(w, w) = max { £ lwi(w, Sw)ws(w, w) + wi (w, Sw)w; (w, w)] }
We get wq(w, Sw) = 0 that is, Sw = w.
Since w = Sw € S(2) C B() there exists w* € Q such that w = Sw = Bw*.
To prove that Tw* = w.
Now putting u = Aug,,v = w* in (C3), we have
1+ pwy (AAug,, Bw*)|w? (S Aug,, Tw*) <
| wi (AAug,, SAus,) wi (Bw*, Tw*) +
2 [ wi (AAug,, SAug,) wi (Bw*, Tw*)
wy (AAugy, SAug,) wy (AAug,, Tw*) wy (Bw*, S Aus,)
wy (AAug,, Tw*) wy (Bw*, SAug,) w (Bw*, Tw*)
Om (AAus,, Bu*),

where,

m (AAusg,, Bw*)—

p max
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w? (AAug,, Bw*) ,wi (AAug,, SAus,) wi (Bw*, Tw*)
wy (AAug,, Tw*) wy (Bw*, SAus,) ,
wy (AAug,, S Aus,) we (AAug,, Tw*) +] ’
wy (Bw*, S Aug,) wy (Bw*, Tw*) ]
L wi(w, w)wy (w, Tw*) +
e e N
wy (w, w)ws (w, Tw*) wy (w, w),
wo (w, Tw*) wy (w, w)w; (w, Tw*)

1

2

m (AAugy,, Bw*) = max [

1+ pwi(w, w)] w? (w, Tw*) <pmax m(w,w)—

PIm(w,w),
where, m(w,w) = max{ wf(lw,w),wl(w,w)wl (w;Tw*) 2 (w,Tw*)wl(*w,w) }
5 lwi(w, w)ws (w, Tw*) + wi (w, w)w (w, Tw*)]
Implies that wy (w, Tw*) = 0. Therefore, Tw* = w. Hence Tw* = z = Bw*.
Since the pair (B, T) is weakly compatible so Tw = T'Bw* = BTw* = Buw.
Now we prove that Tw = w. Now putting u = ug,,v = w in (C3), we have
1+ pw; (Aug,, Bw)]wi? (Sug,, Tw) <

1 [ wi? (Augy, Susy) wi (Bw, Tw)+

2 { wi (Augn, Sug,) wi(Bw, Tww)

wy (Augy, Susy,) we (Aug,, Tw) wy (Bw, Susy,) ,
wo (Augy,, Tw) wy (Bw, Susy,) w (Bw, Tw)

m (Aug,, Bw) — 0m (Aus,, Bw) ,
where,

pmax +

w? (Augy,, Bw) , wy (Augy, Sua,) wi (Bw, Tw)

wa (Augy,, Tw) wy (Bw, Susy,)
wi (Augy,, Susy,) wo (Aug,, Tw) +

wy (Bw, Susy,) wi (Bw, Tw)
Implies that [1 + pw; (w, Bw)| wi(w, Tw) <
1 [wi(w, w)w (Bw, Tw) + wi (w, w)wi(Bw, Tw)]
pmax wi (w, w)ws (w, Tw)w (Bw, w), +
wo(w, Tw)wy (Bw, w)w; (Bw, Tw)
m(w, Bw) — dm(w, Bw),
where,

m (Ausg,, Bw) = max

N[ —=

w%<w7 BU)), w1 (U), w)wl (B’LU, Tw)
wa(w, Tw)w, (Bw, w)
1| wi(w, wws (w, Tw)+

2 | wi(Bw,w)w (Bw, Tw)

m(w, Bw) = max

That is,

[1+ pwr (w, Tw)] w}(w, Tw) < pmax{ 3[04 0],0,0 } + m(w, Tw) — dm(w, Tw),
where,

m(w, Tw) = max { w}(w,Tw),0,ws(w, Tw)w;(Tw,w), } = wi(w, Tw).

Implies that Tw = w. Therefore, w = Tw = Bw.

On the other hand, since w = Tw € T'(2) C A(Q), there exists w*™* € X such that
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w=Tw = Aw**. Now we prove that Sw** = z.

Now putting © = w**, v = w in (C3), we get Sw** =z Sw™ = w = Aw*".

Since the pair (A,S) is weakly compatible so Sw = SAw™ = ASw* = Aw so
Aw = Sw. Hence w = Aw = Bw = Sw = Tw.

Next, we prove A, B, S and T" have unique common fixed point.

Uniqueness can be easily found. Therefore, z is unique common fixed point of A, B, S
and 7. Finally, if condition (ii) of (C3) hold, then the conclusion is similar to that
above, so we omit it. This completes the proof. ([l

Theorem 2.2. Let (),,w) be a complete modular metric space. Let A, B,S
and T be self- mappings of 1 into itself satisfying the following conditions (C4) and
following:

(Cy4) the pairs (A,S) and (B,T) are w-commutative mappings,
(C5) one of A, B, S and T is continuous,
(Cs) 1+ pwi(Au, Bv)] wy? (SPu, Tv) <
2 [wi? (Au, SPu) wy (B, T%) + wy (Au, SPu) wi? (Bv, T)],
pmax wy (Au, SPu) wy (Au, T%) wy (Bv, SPu) , +
wy (Au, T9v) wy (Bv, SPu) wy (Bv, T%) +
m(Au, Bv) — Om(Au, Bv),
where,
w?(Au, Bv),w; (Au, SPu) wy (Bv, T) ,
m(Au, Bv) = max wy (Au, T9) wy (B, SPu)
+ lwi (Au, SPu) wy (Au, T7) 4 wy (Bv, SPu) wy (Bv, T)]
p > 0 is a real number and 0 : [0,+00) — [0,+00) is a continuous function with
0(t) =0 if and only if t =0 and O(t) > 0 for each t > 0 and p,q € Z™.
Then A, B,S and T have a unique common fixed point in €),.

ProOF. From S(Q2) C B(Q2),T(22) C A(Q2), we have
SPQ C SPQ - C 5?0 C SO C B
and
TIQCTI'QC---CT?QCTQC AQ.
Since the pairs (S, A) and (T, B) are commutative mappings,

Y

SPA = SPISA = SP71AS = SP72(SA)S = SP2A82 = ... = ASP
and
TIB =T 'TB=T41'BT =T92(TB)T =T 'BT? = --- = BT".

That is to say, SPA = ASP and T'B = BT".

It follows from Remark 1.6 that the pairs (S?, A) and (7% B) are compatible
and also weakly compatible. Therefore, by Theorem 2.1, we can find that

SP, T4 A, and B have a unique common fixed point w. In addition, we prove that
A, B, S, and T have a unique common fixed point.

From (Cs), by putting u = Sw,v = w, we have

[1 + pw;(ASz, Bw)| w? (SPSz, T9w) <
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L | w? (ASz, 5PSz) w; (Bw, Tw) +
2 [ wy (ASz, SPSz) w? (Bw, Tw) ]
wy (ASz, SPSz) we (ASz, T9w) wy (Bw, SPSz) ,
ws (ASz, T9w) wy (Bw, SPSz) wy (Bw, Tw)

P max

+m(ASz, Bw)— dm(ASz, Bw),

where,
w?(ASz, Bw),w; (ASz, SPSz)w, (Bw, T™),
wy (ASz, T9w) wy (Bw, SPSz)
1| w1 (ASz, SPSz) we (ASz, Tw) + ’
2 [ wy (Bw, SPSz) wy (Bw, Tw) ]

m(ASz, Bw) = max

[1 4 pw; (Sz, w)] w?(Sz, w) <
1 [wi(Sz, Sz)w: (Bw, w) + w1 (Sz, Sz)wi(Bw, w)]
pmax w1 (Sz, Sz)ws (Sz, w)w, (w, Sz)
wa(Sz, w)wy (w, Sz)w; (w, w)

+ m(Sz, w)—0m(Sz, w),

where,

w?(Sz,w), w1 (Sz, Sz)wi (w, w), wa(Sz, w)w; (w, Sz
m(Sz,w) = max{ 1(% [wl()Sz,S(z)wz(S)z,w() +¢31(w,<Sz)w1>(w,(w)] ) } = wi(Sz, w)
1+ pwi(Sw, w)] wi(Sw,w) < w?(Sz,w) — 0 (w?(Sz,w)).
Implies that wy(Sw,w) =0 i.e, Sw = w.
From (Cy), putting u = w,v = Tz, we have
[1+ pwi(Aw, BTz)|w? (SPw, T9Tz) <
[ wi? (Aw, SPw) wy (BTz, T9Tz) +
2 { wi (Aw, SPw) w,? (BTz, T9Tz) |’
wy (Aw, SPw) we (Aw, T9Tz) wy (BTz, SPw),
wy (Aw, TTz) wy (BTz, SPw) wy (BTz,T9T7z)
m(Aw, BTz) — dm(Aw, BTz),

pmax +

wi(Aw, BTz),
wy (Aw, SPw) wy (BTz,T9Tz) ,

where, m(Aw, BTz) = max wy (Aw, TTz) wy (BTz, SPw) ,

1| wr (Aw, SPw) we (Aw, T9Tz) +

2 | wy (BTz, SPw)w; (BTz, T9Tz)
This implies that wy(w,Tw) = 0, i.e., Tw = w. Therefore, we obtain Sw = Tw
= Aw = Bw = w, so w is a common fixed point of A, B, S and T
Finally, we prove that A, B, S and T have a unique common fixed point.
Suppose that p € 2 is also a common fixed point of A, B,S and T, then putting
u=w,v=pin (Cg), we get wi(w,p) = 0, and so w = p. Therefore, maps A, B, S
and T has a unique common fixed point. 0

Example 2.1. Let Q = [0,2] be equipped with the modular metric space
wy(u,v) = @ Let A, B, S and T be four self-mappings defined by
Su=Z, for all u € [0,2],
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1, uel0,1] 5, uel01]
5 uelo,1]
Tu = , Au=< I, ue(l,2), Bu= %, u € (1,2).
g ue (L2
%, u =2 1, u =2

Clearly, we get S(Q) C B(f2) and T(Q2) C A(Q2). Note that A, B and T are not
continuous mappings, and S is continuous in Q. Clearly, (A,S) and (B, T) are w-
commutative mappings. So all the conditions of Theorem 2.1 are satisfied.

Moreover, % is the unique common fixed point for all of the mappings A, B, S and

T.
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