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Bicomplex valued bipolar metric spaces and fixed

point theorems

Gurusamy Siva

Abstract. The concept of bicomplex valued bipolar metric space is introduced

in this article, and some properties are derived. Also, some fixed point results of

contravariant maps satisfying rational inequalities are proved for bicomplex valued

bipolar metric spaces.

1. Introduction

Let C1 be the set of all complex numbers and z1, z2 ∈ C1. Define a partial order

≾ on C1 as follows. z1 ≾ z2 if and only if Re(z1) ≤ Re(z2), Im(z1) ≤ Im(z2). It

follows that z1 ≾ z2 if one of the following conditions is satisfied:

(I) Re(z1) = Re(z2), Im(z1) < Im(z2),

(II) Re(z1) < Re(z2), Im(z1) = Im(z2),

(III) Re(z1) < Re(z2), Im(z1) < Im(z2),

(IV) Re(z1) = Re(z2), Im(z1) = Im(z2).

In particular we will write z1 ⋨ z2 if z1 ̸= z2 and one of (I),(II) and (III) is satisfied,

and we will write z1 ≺ z2 if only (III) is satisfied. Note that

0 ≾ z1 ⋨ z2 ⇒ |z1| < |z2|
z1 ≾ z2, z2 ≺ z3 ⇒ z1 ≺ z3.

Let C0 and C2 be the set of all real and bicomplex numbers respectively. Bicom-

plex numbers are defined by C. Segre [14] as: τ = a1 + a2i1 + a3i2 + a4i1i2, where

a1, a2, a3, a4 ∈ C0, and the independent units i1, i2 are such that ii
2 = i2

2 = −1, and
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i1i2 = i2i1. We denote the set of bicomplex numbers C2 is defined as:

C2 = {τ : τ = a1 + a2i1 + a3i2 + a4i1i2, a1, a2, a3, a4 ∈ C0},
i.e., C2 = {τ : τ = z1 + i2z2, z1, z2 ∈ C1}, where z1 = a1 + a2i1 ∈ C1 and z2 =

a3 + a4i1 ∈ C1.

If τ = z1 + i2z2 and ν = w1 + i2w2 be any two bicomplex numbers then the sum

is τ ± ν = (z1 + i2z2) ± (w1 + i2w2) = (z1 ± w1) + i2(z2 ± w2) and the product is

τ.ν = (z1 + i2z2).(w1 + i2w2) = (z1w1 − z2w2) + i2(z1w2 + z2w1).

An element ν = w1 + i2w2 ∈ C2 is nonsingular if and only if |w1
2 +w2

2| ≠ 0 and

singular if and only if |w1
2 +w2

2| = 0. The inverse of ν is defined as ν−1 = w1−i2w2

w1
2+w2

2 .

A bicomplex number τ = a1+ a2i1+ a3i2+ a4i1i2 ∈ C2 is said to be degenerated

if the matrix [
a1 a2
a3 a4

]
is degenerated. In that case τ−1 exists and it is also degenerated.

The norm ∥ · ∥ of C2 is a positive real valued function and ∥ · ∥ : C2 → C0
+

by ∥τ∥ = ∥z1 + i2z2∥ = {|z1|2 + |z2|2}
1
2 = (a1

2 + a2
2 + a3

2 + a4
2)

1
2 , where τ =

a1 + a2i1 + a3i2 + a4i1i2 = z1 + i2z2 ∈ C2.

Define a partial order ≾i2 on C2 as follows. For τ = z1 + i2z2 and ν = w1 + i2w2

be any two bicomplex numbers. τ ≾i2 ν if and only if z1 ≾ w1, and z2 ≾ w2. It

follows that τ ≾i2 ν if one of the following conditions is satisfied:

(i) z1 = w1, z2 = w2,

(ii) z1 ≺ w1, z2 = w2,

(iii) z1 = w1, z2 ≺ w2,

(iv) z1 ≺ w1, z2 ≺ w2.

In particular we will write τ ⋨i2 ν if τ ≾i2 ν and τ ̸= ν and one of (ii),(iii), and (iv)

is satisfied, and we will write τ ≺ ν if only (iv) is satisfied. Note that

(I) τ ≾i2 ν ⇒ ∥τ∥ ≤ ∥ν∥,
(II) ∥τ + ν∥ ≤ ∥τ∥+ ∥ν∥,
(III) ∥aτ∥ = a∥τ∥, where a is a non negative real number,

(IV) ∥τν∥ ≤
√
2∥τ∥∥ν∥, and the equality holds only when atleast one of τ and

ν is degenerated,

(V) ∥τ−1∥ = ∥τ∥−1 if τ is a degenerated bicomplex number with 0 ≺ τ ,

(VI) ∥ τ
ν
∥ = ∥τ∥

∥ν∥ , if ν is a degenerated bicomplex number.

A. Azam et al introduced the concept of complex valued metric spaces in [1].

The notion of bicomplex valued metric spaces was introduced by J. Choi et al in [3],

some properties were derived and common fixed point results for mappings satisfying

a rational inequality were proved. There are many articles appeared for fixed point

theory in bicomplex valued metric spaces, see [2, 4, 5, 6, 7, 13].
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Definition 1.1. [1] Let G be a non empty set. A bicomplex valued metric is a

mapping d : G×G → C2 satisfying the following axioms:

(i) 0 ≾i2 d(ϑ,ϖ), ∀ ϑ,ϖ ∈ G,

(ii) d(ϑ,ϖ) = 0 if and only if ϑ = ϖ in G,

(iii) d(ϑ,ϖ) = d(ϖ,ϑ), ∀ ϑ,ϖ ∈ G,

(iv) d(ϑ,ϖ) ≾i2 d(ϑ, κ) + d(κ,ϖ), ∀ ϑ, κ,ϖ ∈ G.

The pair (G, d) is called a bicomplex valued metric space.

A. Mutlu et al [11] introduced the notion of bipolar metric space to giving a

new definition of distance measurement between the members of two separate sets.

Bipolar metric space is a metric space generalization. Many articles are appearing

for fixed point theory in bipolar metric spaces, see for example [8, 9, 10, 12, 15]

and the references therein.

Definition 1.2. [11] Let G and H be two non empty sets. A bipolar metric is

a mapping D : G×H → [0,∞) satisfying the following axioms:

(I) D(ϑ,ϖ) = 0 ⇒ ϑ = ϖ, whenever (ϑ,ϖ) ∈ G×H,

(II) ϑ = ϖ ⇒ D(ϑ,ϖ) = 0, whenever (ϑ,ϖ) ∈ G×H,

(III) D(ϑ,ϖ) = D(ϖ,ϑ), ∀ ϑ,ϖ ∈ G ∩H,

(IV) D(ϑ1, ϖ2) ≤ D(ϑ1, ϖ1)+D(ϑ2, ϖ1)+D(ϑ2, ϖ2), ∀ ϑ1, ϑ2 ∈ G, and ϖ1, ϖ2 ∈
H.

The triple (G,H,D) is called a bipolar metric space.

In this paper, we extend the domain of bicomplex valued metric to Cartesian

product of two non-empty sets, and we present a new definition of bicomplex valued

bipolar metric space that generalizes the notion of bicomplex valued metric space.

Also, we derive some properties of bicomplex valued bipolar metric spaces. More-

over, we prove some fixed point results for contravariant maps satisfying various

types of rational inequalities in bicomplex valued bipolar metric space.

2. Bicomplex valued bipolar metric spaces

Definition 2.1. Let G and H be two non empty sets. A bicomplex valued

bipolar metric is a mapping d : G×H → C2 satisfying the following conditions:

(i) 0 ≾i2 d(ϑ,ϖ), whenever (ϑ,ϖ) ∈ G×H,

(ii) d(ϑ,ϖ) = 0 ⇒ ϑ = ϖ , whenever (ϑ,ϖ) ∈ G×H,

(iii) ϑ = ϖ ⇒ d(ϑ,ϖ) = 0, whenever (ϑ,ϖ) ∈ G×H,

(iv) d(ϑ,ϖ) = d(ϖ,ϑ), ∀ ϑ,ϖ ∈ G ∩H,

(v) d(ϑ1, ϖ2) ≾i2 d(ϑ1, ϖ1) + d(ϑ2, ϖ1) + d(ϑ2, ϖ2), ∀ ϑ1, ϑ2 ∈ G, and ϖ1, ϖ2 ∈
H.

The triple (G,H, d) is called a bicomplex valued bipolar metric space(or, BVBMS).
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Remark 2.2. Let (G,H, d) be a BVBMS. If G∩H = ∅, then (G,H, d) is called

disjoint. The space (G,H, d) is said to be a joint if G ∩H ̸= ∅. The sets H and G

are called right pole and left pole of (G,H, d), respectively.

Example 2.3. Let G = (0,∞) and H = (−∞, 0]. Let d(ϑ,ϖ) = (1 + i1 + i2 +

i1i2)|ϑ−ϖ|, where (ϑ,ϖ) ∈ G×H. Then (G,H, d) is a disjoint BVBMS.

Remark 2.4. Let (G, d) be a bicomplex valued metric space, then (G,G, d) is

a BVBMS. Conversely, if (G,H, d) is a BVBMS such that G = H, then (G, d) is a

bicomplex valued metric space.

Definition 2.5. Let (G,H, d) be a BVBMS. Where points of the sets H,G,

and G ∩ H are called right, left, and central points respectively. A sequence that

contains only right(or left, or central) points is called a right (or left, or central)

sequence in (G,H, d).

Definition 2.6. Let (G,H, d) be a BVBMS. A left sequence (ϑn)
∞
n=1 converges

to a right point ϖ(or (ϑn)
∞
n=1 → ϖ) if and only if for every c ∈ C2 with 0 ≺i2 c,

there exists an integer n0 ∈ N(Natural numbers) such that d(ϑn, ϖ) ≺i2 c, ∀ n ≥ n0.

Also a right sequence (ϖn)
∞
n=1 converges to a left point ϑ (or (ϖn)

∞
n=1 → ϑ) if and

only if for every c ∈ C2 with 0 ≺i2 c, there exists an integer n0 ∈ N such that

d(ϑ,ϖn) ≺i2 c, ∀ n ≥ n0. When it is given (κn)
∞
n=1 → ρ for a BVBMS (G,H, d)

without precise data about the sequence, this means that either (κn)
∞
n=1 is a right

sequence and ρ is a left point, or (κn)
∞
n=1 is a left sequence and ρ is a right point.

Lemma 2.1. Let (G,H, d) be a BVBMS. Then a left sequence (ϑn)
∞
n=1 converges

to a right point ϖ if and only if ∥d(ϑn, ϖ)∥ → 0, and also a right sequence (ϖn)
∞
n=1

converges to a left point ϑ if and only if ∥d(ϑ,ϖn)∥ → 0.

Proof. Let (ϑn)
∞
n=1 be a left sequence, and (ϑn)

∞
n=1 → ϖ ∈ H. For a given real

number ϵ > 0, let c = ϵ
2
+ i1

ϵ
2
+ i2

ϵ
2
+ i1i2

ϵ
2
. For every c ∈ C2 with 0 ≺i2 c, there

exists an integer n0 ∈ N such that, for all n ≥ n0, d(ϑn, ϖ) ≺i2 c.

∥d(ϑn, ϖ)∥ < ∥c∥ = ϵ, ∀ n ≥ n0.

It follows that ∥d(ϑn, ϖ)∥ → 0 as n → ∞. Conversely, suppose that ∥d(ϑn, ϖ)∥ → 0

as n → ∞. Then given c ∈ C2 with 0 ≺i2 c, there exists a real number δ > 0 such

that for z ∈ C2

∥z∥ < δ ⇒ z ≺i2 c

For this δ, there exists an integer n0 ∈ N such that

∥d(ϑn, ϖ)∥ < δ, ∀ n ≥ n0.

This means that d(ϑn, ϖ) ≺i2 c, ∀n ≥ n0. Hence ϑn → ϖ ∈ H.

Obviously, a right sequence (ϖn)
∞
n=1 converges to a left point ϑ if and only if

∥d(ϑ,ϖn)∥ → 0 and this complete the proof. □
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Lemma 2.2. Let (G,H, d) be a BVBMS. If a central point is a limit of a

sequence, then it is the unique limit of the sequence.

Proof. Let (ϑn)
∞
n=1 be a left sequence, (ϑn)

∞
n=1 → ϑ ∈ G ∩H, and (ϑn)

∞
n=1 →

ϖ ∈ H. For a given real number ϵ > 0, let c = ϵ
2
+ i1

ϵ
2
+ i2

ϵ
2
+ i1i2

ϵ
2
. For every

c ∈ C2 with 0 ≺i2 c, there exists an integer n0 ∈ N such that, for all n ≥ n0, we

have d(ϑn, ϑ) ≺i2
c
2
, and d(ϑn, ϖ) ≺i2

c
2
, and then

d(ϑ,ϖ) ≾i2 d(ϑ, ϑ) + d(ϑn, ϑ) + d(ϑn, ϖ) ≺i2 0 +
c

2
+

c

2
.

∥d(ϑ,ϖ)∥ ≤ ∥d(ϑ, ϑ) + d(ϑn, ϑ) + d(ϑn, ϖ)∥ < ∥0 + c

2
+

c

2
∥ = ∥c∥ = ϵ.

Since ϵ > 0 is arbitrary, we have d(ϑ,ϖ) = 0 which implies ϑ = ϖ. □

Lemma 2.3. Let (G,H, d) be a BVBMS. If a left sequence (ϑn)
∞
n=1 converges

to ϖ and a right sequence (ϖn)
∞
n=1 converges to ϑ, then d(ϑn, ϖn) → d(ϑ,ϖ) as

n → ∞.

Proof. Let (ϑn)
∞
n=1 → ϖ ∈ H, and (ϖn)

∞
n=1 → ϑ ∈ G. For a given real number

ϵ > 0, let c = ϵ
2
+ i1

ϵ
2
+ i2

ϵ
2
+ i1i2

ϵ
2
. For every c ∈ C2 with 0 ≺i2 c, there exists an

integer n0 ∈ N such that, for all n ≥ n0, we have d(ϑn, ϖ) ≺i2
c
2
, and d(ϑ,ϖn) ≺i2

c
2
,

then

d(ϑ,ϖ) ≾i2 d(ϑ,ϖn) + d(ϑn, ϖn) + d(ϑn, ϖ)

implies

d(ϑ,ϖ)− d(ϑn, ϖn) ≾i2 d(ϑ,ϖn) + d(ϑn, ϖ) ≺ c

2
+

c

2
,

∥d(ϑn, ϖn)− d(ϑ,ϖ)∥ ≤ ∥d(ϑ,ϖn) + d(ϑn, ϖ)∥ < ∥c∥ = ϵ,∀n ≥ n0,

and hence d(ϑn, ϖn) → d(ϑ,ϖ) as n → ∞. □

Definition 2.7. Let (G1, H1) and (G2, H2) be two bicomplex valued bipolar

metric spaces, and f : G1 ∪H1 → G2 ∪H2.

(i) If f(G1) ⊆ G2 and f(H1) ⊆ H2, then f is called a covariant map from

(G1, H1) to (G2, H2), and we write f : (G1, H1) ⇒ (G2, H2).

(ii) If f(G1) ⊆ H2 and f(H1) ⊆ G2, then f is called a contravariant map from

(G1, H1) to (G2, H2), and we write f : (G1, H1) ⇄ (G2, H2).

Remark 2.8. Suppose d1, and d2 be two bicomplex valued bipolar metrics on

(G1, H1) and (G2, H2) respectively. We can also use the symbols f : (G1, H1, d1) ⇒
(G2, H2, d2) and f : (G1, H1, d1) ⇄ (G2, H2, d2) in the place of f : (G1, H1) ⇒
(G2, H2) and f : (G1, H1) ⇄ (G2, H2).

Definition 2.9. Let (G,H, d) be a BVBMS.

(i) A sequence (ϑn, ϖn) on the set G×H is called a bisequence on (G,H, d).
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(ii) If both (ϑn)
∞
n=1 and (ϖn)

∞
n=1 converges, then the bisequence (ϑn, ϖn) is

called convergent. If both (ϑn)
∞
n=1 and (ϖn)

∞
n=1 converges to a same point

ϑ ∈ G ∩H, then the bisequence is called biconvergent.

(iii) A bisequence (ϑn, ϖn) on (G,H, d) is called a Cauchy bisequence, if for each

c ∈ C2 with 0 ≺i2 c, there is an n0 ∈ N such that d(ϑn, ϖn+m) ≺i2 c, ∀
n ≥ n0.

Lemma 2.4. Let (G,H, d) be a BVBMS. Then (ϑn, ϖn) is a Cauchy bisequence

if and only if ∥d(ϑn, ϖn+m)∥ → 0 as n → ∞.

Proof. Let (ϑn, ϖn) is a Cauchy bisequence. For a given real number ϵ > 0,

let c = ϵ
2
+ i1

ϵ
2
+ i2

ϵ
2
+ i1i2

ϵ
2
. For every c ∈ C2 with 0 ≺i2 c, there exists an integer

n0 ∈ N such that, for all n ≥ n0, d(ϑn, ϖn+m) ≺i2 c.

∥d(ϑn, ϖn+m)∥ < ∥c∥ = ϵ, ∀ n ≥ n0.

It follows that ∥d(ϑn, ϖn+m)∥ → 0 as n → ∞. Conversely, suppose that ∥d(ϑn, ϖn+m)∥
→ 0 as n → ∞. Then given c ∈ C2 with 0 ≺i2 c, there exists a real number δ > 0

such that for z ∈ C2

∥z∥ < δ ⇒ z ≺i2 c

For this δ, there exists an integer n0 ∈ N such that

∥d(ϑn, ϖn+m)∥ < δ, ∀ n ≥ n0.

This means that d(ϑn, ϖn+m) ≺i2 c,∀n ≥ n0. Hence (ϑn, ϖn) is a Cauchy bisequence.

□

Proposition 2.5. Let (G,H, d) be a BVBMS. Then every biconvergent bise-

quence is a Cauchy bisequence.

Proof. Let (ϑn, ϖn) be a bisequence, which is biconvergent to a point ϑ ∈
G ∩ H. For a given real number ϵ > 0, let c = ϵ

2
+ i1

ϵ
2
+ i2

ϵ
2
+ i1i2

ϵ
2
. For every

c ∈ C2 with 0 ≺i2 c, there exists an integer n0 ∈ N such that for every n ≥ n0,

d(ϑn, ϑ) ≺i2
c
2
, and for every n ≥ n0, d(ϑ,ϖn+m) ≺i2

c
2
. Then we have

d(ϑn, ϖn+m) ≾i2 d(ϑn, ϑ) + d(ϑ, ϑ) + d(ϑ,ϖn+m) ≺i2

c

2
+ 0 +

c

2
,∀n ≥ n0.

∥d(ϑn, ϖn+m)∥ ≤ ∥d(ϑn, ϑ) + d(ϑ, ϑ) + d(ϑ,ϖn+m)∥ < ∥ c
2
+ 0 +

c

2
∥ = ∥c∥ = ϵ,

∀n ≥ n0.

So (ϑn, ϖn) is a Cauchy bisequence. □

Proposition 2.6. Let (G,H, d) be a BVBMS. Then every convergent Cauchy

bisequence is biconvergent.
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Proof. Let (ϑn, ϖn) be a Cauchy bisequence such that (ϑn)
∞
n=1 convergent

to ϖ in H and (ϖn)
∞
n=1 convergent to ϑ in G. For a given real number ϵ > 0, let

c = ϵ
2
+i1

ϵ
2
+i2

ϵ
2
+i1i2

ϵ
2
. For every c ∈ C2 with 0 ≺i2 c, there exists an integer n0 ∈ N

such that d(ϑn, ϖ) ≺i2
c
3
, d(ϑ,ϖn+m) ≺i2

c
3
, for all n ≥ n0, and d(ϑn, ϖn+m) ≺i2

c
3
,

for all n ≥ n0. Then

d(ϑ,ϖ) ≾i2 d(ϑ,ϖn+m) + d(ϑn, ϖn+m) + d(ϑn, ϖ) ≺i2

c

3
+

c

3
+

c

3
,∀n ≥ n0.

∥d(ϑ,ϖ)∥ ≤ ∥d(ϑ,ϖn+m) + d(ϑn, ϖn+m) + d(ϑn, ϖ)∥ < ∥ c
3
+

c

3
+

c

3
∥ = ∥c∥ = ϵ,

∀n ≥ n0.

Therefore d(ϑ,ϖ) = 0 and so that ϑ = ϖ. Then (ϑn, ϖn) is biconvergent. □

Definition 2.10. A BVBMS (G,H, d) is called complete, if every Cauchy bise-

quence is convergent, or equivalently, biconvergent.

3. Main results

In this section we shall prove some fixed point theorems of different types of

contravariant mappings on BVBMS.

Theorem 3.1. Let (G,H, d) be a complete BVBMS with degenerated 1+d(ϑ,ϖ)

and ∥1 + d(ϑ,ϖ)∥ ̸= 0, whenever (ϑ,ϖ) ∈ G × H. If a contravariant map f :

(G,H, d) ⇄ (G,H, d) satisfies

d(f(ϖ), f(ϑ)) ≾i2 λd(ϑ,ϖ) +
µd(ϑ, f(ϑ))d(f(ϖ), ϖ)

1 + d(ϑ,ϖ)
,

whenever (ϑ,ϖ) ∈ G × H, for some λ, µ ∈ (0, 1) with λ +
√
2µ < 1. Then the

function f : G ∪H → G ∪H has a UFP.

Proof. Let ϑ0 ∈ G, ϖ0 = f(ϑ0) ∈ H, and ϑ1 = f(ϖ0). Suppose, ϖn = f(ϑn)

and ϑn+1 = f(ϖn), for all n ∈ N. Then (ϑn, ϖn) is a bisequence on (G,H, d). For

all n ∈ N, from

d(ϑn, ϖn) = d(f(ϖn−1), f(ϑn))

≾i2 λd(ϑn, ϖn−1) +
µd(ϑn, f(ϑn))d(f(ϖn−1), ϖn−1)

1 + d(ϑn, ϖn−1)

= λd(ϑn, ϖn−1) +
µd(ϑn, ϖn)d(ϑn, ϖn−1)

1 + d(ϑn, ϖn−1)

∥d(ϑn, ϖn)∥ ≤
∥∥∥∥λd(ϑn, ϖn−1) +

µd(ϑn, ϖn)d(ϑn, ϖn−1)

1 + d(ϑn, ϖn−1)

∥∥∥∥
≤ λ∥d(ϑn, ϖn−1)∥+

√
2µ∥d(ϑn, ϖn)∥
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we conclude that

∥d(ϑn, ϖn)∥ ≤ λ

1−
√
2µ

∥d(ϑn, ϖn−1)∥,

and

d(ϑn, ϖn−1) = d(f(ϖn−1), f(ϑn−1))

≾i2 λd(ϑn−1, ϖn−1) +
µd(ϑn−1, f(ϑn−1))d(f(ϖn−1), ϖn−1)

1 + d(ϑn−1, ϖn−1)

= λd(ϑn−1, ϖn−1) +
µd(ϑn−1, ϖn−1)d(ϑn, ϖn−1)

1 + d(ϑn−1, ϖn−1)

∥d(ϑn, ϖn−1)∥ ≤
∥∥∥∥λd(ϑn−1, ϖn−1) +

µd(ϑn−1, ϖn−1)d(ϑn, ϖn−1)

1 + d(ϑn−1, ϖn−1)

∥∥∥∥
≤ λ∥d(ϑn−1, ϖn−1)∥+

√
2µ∥d(ϑn, ϖn−1)∥,

so that

∥d(ϑn, ϖn−1)∥ ≤ λ

1−
√
2µ

∥d(ϑn−1, ϖn−1)∥,

Therefore, by putting α = λ
1−

√
2µ
, we have

∥d(ϑn, ϖn)∥ ≤ α2n∥d(ϑ0, ϖ0)∥

and

∥d(ϑn, ϖn−1)∥ ≤ α2n−1∥d(ϑ0, ϖ0)∥.

For every m,n ∈ N,

d(ϑn, ϖm) ≾i2 d(ϑn, ϖn) + d(ϑn+1, ϖn) + d(ϑn+1, ϖm)

≾i2 (α2n + α2n+1)d(ϑ0, ϖ0) + d(ϑn+1, ϖm)

≾i2 ...

≾i2 (α2n + α2n+1 + ...+ α2m−1)d(ϑ0, ϖ0) + d(ϑm, ϖm)

≾i2 (α2n + α2n+1 + ...+ α2m)d(ϑ0, ϖ0), if m > n,

∥d(ϑn, ϖm)∥ ≤ (α2n + α2n+1 + ...+ α2m)∥d(ϑ0, ϖ0)∥, if m > n,

and similarly, if m < n, then

d(ϑn, ϖm) ≾i2 (α
2m+1 + α2m+2 + ...+ α2n+1)d(ϑ0, ϖ0),

∥d(ϑn, ϖm)∥ ≤ (α2m+1 + α2m+2 + ...+ α2n+1)∥d(ϑ0, ϖ0)∥.

By α ∈ (0, 1), ∥d(ϑn, ϖm)∥ → 0, as n,m → ∞, we conclude that (ϑn, ϖn) is a

Cauchy bisequence. Since (G,H, d) is complete, (ϑn, ϖn) converges, and biconverges

to a point κ ∈ G ∩ H. Hence, f(ϑn) = ϖn → κ ∈ G ∩ H as n → ∞ implies
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d(f(κ), f(ϑn)) → d(f(κ), κ) as n → ∞, by using Lemma 2.3. Also by taking the

limit from

d(f(κ), f(ϑn)) ≾i2 λd(ϑn, κ) +
µd(ϑn, ϖn)d(f(κ), κ)

1 + d(ϑn, κ)

we obtain

∥d(f(κ), f(ϑn))∥ ≤ λ∥d(ϑn, κ)∥+
µ∥d(ϑn, ϖn)d(f(κ), κ)∥

∥1 + d(ϑn, κ)∥
,

as n → ∞, we get d(f(κ), κ) = 0. Hence f(κ) = κ. Therefore κ is a fixed point of

f .

If ρ is another fixed point of f , then f(ρ) = ρ, ρ ∈ G ∩H, and hence,

d(κ, ρ) = d(f(κ), f(ρ)) ≾i2 λd(κ, ρ) +
µd(κ, f(κ))d(f(ρ), ρ)

1 + d(κ, ρ)
≾i2 λd(κ, ρ).

Therefore ∥d(κ, ρ)∥ = 0 so that κ = ρ. So f has a UFP. □

The above Theorem generalizes a Corollary 5 of [1] and Corollary 3.2 of [2].

Example 3.1. Let G = {0, 1
2
, 2} and H = {0, 1

2
}. Let d(ϑ,ϖ) = (1+ i2)|ϑ−ϖ|,

where (ϑ,ϖ) ∈ G×H. Then (G,H, d) is a complete BVBMS. Define a contravariant

map f : (G,H, d) ⇄ (G,H, d) by f(0) = 0, f(1
2
) = 0, and f(2) = 1

2
. Then, f satisfies

the inequality d(f(ϖ), f(ϑ)) ≾i2 λd(ϑ,ϖ) + µd(ϑ,f(ϑ))d(f(ϖ),ϖ)
1+d(ϑ,ϖ)

for λ = 1
3
and µ = 1

6
.

By Theorem 3.1, f has a UFP zero in G ∩H.

Theorem 3.2. Let (G,H, d) be a complete BVBMS with degenerated 1+d(ϑ,ϖ)

and ∥1 + d(ϑ,ϖ)∥ ̸= 0, whenever (ϑ,ϖ) ∈ G × H. If a contravariant map f :

(G,H, d) ⇄ (G,H, d) satisfies

d(f(ϖ), f(ϑ)) ≾i2 λ[d(ϑ, f(ϑ)) + d(f(ϖ), ϖ)] +
µd(ϑ, f(ϑ))d(f(ϖ), ϖ)

1 + d(ϑ,ϖ)
,

whenever (ϑ,ϖ) ∈ G × H, for some λ, µ ∈ (0, 1) with 2λ +
√
2µ < 1. Then the

function f : G ∪H → G ∪H has a UFP.

Proof. Let ϑ0 ∈ G, ϖ0 = f(ϑ0) ∈ H, and ϑ1 = f(ϖ0). Suppose, ϖn = f(ϑn)

and ϑn+1 = f(ϖn), for all n ∈ N. Then (ϑn, ϖn) is a bisequence on (G,H, d). For
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all n ∈ N, from

d(ϑn, ϖn) = d(f(ϖn−1), f(ϑn))

≾i2 λ[d(ϑn, f(ϑn)) + d(f(ϖn−1), ϖn−1)]

+
µd(ϑn, f(ϑn))d(f(ϖn−1), ϖn−1)

1 + d(ϑn, ϖn−1)

= λ[d(ϑn, ϖn) + d(ϑn, ϖn−1)] +
µd(ϑn, ϖn)d(ϑn, ϖn−1)

1 + d(ϑn, ϖn−1)

∥d(ϑn, ϖn)∥ ≤
∥∥∥∥λ[d(ϑn, ϖn) + d(ϑn, ϖn−1)] +

µd(ϑn, ϖn)d(ϑn, ϖn−1)

1 + d(ϑn, ϖn−1)

∥∥∥∥
≤ λ∥[d(ϑn, ϖn) + d(ϑn, ϖn−1)]∥+

√
2µ∥d(ϑn, ϖn)∥,

we conclude that

∥d(ϑn, ϖn)∥ ≤ λ

1− λ−
√
2µ

∥d(ϑn, ϖn−1)∥,

and

d(ϑn, ϖn−1) = d(f(ϖn−1), f(ϑn−1))

≾i2 λ[d(ϑn−1, f(ϑn−1)) + d(f(ϖn−1), ϖn−1)]

+
µd(ϑn−1, f(ϑn−1))d(f(ϖn−1), ϖn−1)

1 + d(ϑn−1, ϖn−1)

= λ[d(ϑn−1, ϖn−1) + d(ϑn, ϖn−1)] +
µd(ϑn−1, ϖn−1)d(ϑn, ϖn−1)

1 + d(ϑn−1, ϖn−1)

∥d(ϑn, ϖn−1)∥ ≤
∥∥∥∥λ[d(ϑn−1, ϖn−1) + d(ϑn, ϖn−1)] +

µd(ϑn−1, ϖn−1)d(ϑn, ϖn−1)

1 + d(ϑn−1, ϖn−1)

∥∥∥∥
≤ λ∥[d(ϑn−1, ϖn−1) + d(ϑn, ϖn−1)]∥+

√
2µ∥d(ϑn, ϖn−1)∥

so that

∥d(ϑn, ϖn−1)∥ ≤ λ

1− λ−
√
2µ

∥d(ϑn−1, ϖn−1)∥,

Therefore, by putting α = λ
1−λ−

√
2µ
, we have

∥d(ϑn, ϖn)∥ ≤ α2n∥d(ϑ0, ϖ0)∥

and

∥d(ϑn, ϖn−1)∥ ≤ α2n−1∥d(ϑ0, ϖ0)∥.
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For every m,n ∈ N,

d(ϑn, ϖm) ≾i2 d(ϑn, ϖn) + d(ϑn+1, ϖn) + d(ϑn+1, ϖm)

≾i2 (α2n + α2n+1)d(ϑ0, ϖ0) + d(ϑn+1, ϖm)

≾i2 ...

≾i2 (α2n + α2n+1 + ...+ α2m−1)d(ϑ0, ϖ0) + d(ϑm, ϖm)

≾i2 (α2n + α2n+1 + ...+ α2m)d(ϑ0, ϖ0), if m > n,

∥d(ϑn, ϖm)∥ ≤ (α2n + α2n+1 + ...+ α2m)∥d(ϑ0, ϖ0)∥, if m > n,

and similarly, if m < n, then

d(ϑn, ϖm) ≾i2 (α
2m+1 + α2m+2 + ...+ α2n+1)d(ϑ0, ϖ0),

∥d(ϑn, ϖm)∥ ≤ (α2m+1 + α2m+2 + ...+ α2n+1)∥d(ϑ0, ϖ0)∥.

By α ∈ (0, 1), ∥d(ϑn, ϖm)∥ → 0, as n,m → ∞, we conclude that (ϑn, ϖn) is a

Cauchy bisequence. Since (G,H, d) is complete, (ϑn, ϖn) converges, and biconverges

to a point κ ∈ G ∩ H. Hence, f(ϑn) = ϖn → κ ∈ G ∩ H as n → ∞ implies

d(f(κ), f(ϑn)) → d(f(κ), κ) as n → ∞, by using Lemma 2.3. Also by taking the

limit from

d(f(κ), f(ϑn)) ≾i2 λ[d(ϑn, ϖn) + d(f(κ), κ)] +
µd(ϑn, ϖn)d(f(κ), κ)

1 + d(ϑn, κ)

we obtain

∥d(f(κ), f(ϑn))∥ ≤ λ[∥d(ϑn, ϖn) + d(f(κ), κ)∥] + µ∥d(ϑn, ϖn)d(f(κ), κ)∥
∥1 + d(ϑn, κ)∥

,

as n → ∞, we get d(f(κ), κ) = 0. Hence f(κ) = κ. Therefore κ is a fixed point of

f .

If ρ is another fixed point of f , then f(ρ) = ρ, ρ ∈ G ∩H, and hence,

d(κ, ρ) = d(f(κ), f(ρ)) ≾i2 λ[d(κ, f(κ)) + d(f(ρ), ρ)] +
µd(κ, f(κ))d(f(ρ), ρ)

1 + d(κ, ρ)
.

Therefore ∥d(κ, ρ)∥ = 0 so that κ = ρ. So f has a UFP. □

Theorem 3.3. Let (G,H, d) be a complete BVBMS with degenerated 1+d(ϑ, f(ϑ))+

d(f(ϖ), ϖ) and ∥1 + d(ϑ, f(ϑ)) + d(f(ϖ), ϖ)∥ ≠ 0, whenever (ϑ,ϖ) ∈ G×H. If a

contravariant map f : (G,H, d) ⇄ (G,H, d) satisfies

d(f(ϖ), f(ϑ)) ≾i2 λ[d(ϑ,ϖ)+d(ϑ, f(ϑ))+d(f(ϖ), ϖ)]+
µd(ϑ, f(ϑ))d(f(ϖ), ϖ)

1 + d(ϑ, f(ϑ)) + d(f(ϖ), ϖ)
,

whenever (ϑ,ϖ) ∈ G × H, for some λ, µ ∈ (0, 1) with 3λ +
√
2µ < 1. Then the

function f : G ∪H → G ∪H has a UFP.
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Proof. Let ϑ0 ∈ G, ϖ0 = f(ϑ0) ∈ H, and ϑ1 = f(ϖ0). Suppose, ϖn = f(ϑn)

and ϑn+1 = f(ϖn), for all n ∈ N. Then (ϑn, ϖn) is a bisequence on (G,H, d). For

all n ∈ N, from

d(ϑn, ϖn) = d(f(ϖn−1), f(ϑn))

≾i2 λ[d(ϑn, ϖn−1) + d(ϑn, f(ϑn)) + d(f(ϖn−1), ϖn−1)]

+
µd(ϑn, f(ϑn))d(f(ϖn−1), ϖn−1)

1 + d(ϑn, f(ϑn)) + d(f(ϖn−1), ϖn−1)

= λ[d(ϑn, ϖn−1) + d(ϑn, ϖn) + d(ϑn, ϖn−1)]

+
µd(ϑn, ϖn)d(ϑn, ϖn−1)

1 + d(ϑn, ϖn) + d(ϑn, ϖn−1)

∥d(ϑn, ϖn)∥ ≤ ∥λ[d(ϑn, ϖn−1) + d(ϑn, ϖn) + d(ϑn, ϖn−1)]

+
µd(ϑn, ϖn)d(ϑn, ϖn−1)

1 + d(ϑn, ϖn) + d(ϑn, ϖn−1)

∥∥∥∥
≤ λ∥[d(ϑn, ϖn−1) + d(ϑn, ϖn) + d(ϑn, ϖn−1)]∥+

√
2µ∥d(ϑn, ϖn)∥

we conclude that

∥d(ϑn, ϖn)∥ ≤ 2λ

1− λ−
√
2µ

∥d(ϑn, ϖn−1)∥,

and

d(ϑn, ϖn−1) = d(f(ϖn−1), f(ϑn−1))

≾i2 λ[d(ϑn−1, ϖn−1) + d(ϑn−1, f(ϑn−1)) + d(f(ϖn−1), ϖn−1)]

+
µd(ϑn−1, f(ϑn−1))d(f(ϖn−1), ϖn−1)

1 + d(ϑn−1, f(ϑn−1)) + d(f(ϖn−1), ϖn−1)

= λ[d(ϑn−1, ϖn−1) + d(ϑn−1, ϖn−1) + d(ϑn, ϖn−1)]

+
µd(ϑn−1, ϖn−1)d(ϑn, ϖn−1)

1 + d(ϑn−1, f(ϑn−1)) + d(f(ϖn−1), ϖn−1)

∥d(ϑn, ϖn−1)∥ ≤ ∥λ[d(ϑn−1, ϖn−1) + d(ϑn−1, ϖn−1) + d(ϑn, ϖn−1)]∥

+

∥∥∥∥+ µd(ϑn−1, ϖn−1)d(ϑn, ϖn−1)

1 + d(ϑn−1, f(ϑn−1)) + d(f(ϖn−1), ϖn−1)

∥∥∥∥
≤ λ∥[d(ϑn−1, ϖn−1) + d(ϑn−1, ϖn−1) + d(ϑn, ϖn−1)]∥+

√
2µ∥d(ϑn, ϖn−1)∥

so that

∥d(ϑn, ϖn−1)∥ ≤ 2λ

1− λ−
√
2µ

∥d(ϑn−1, ϖn−1)∥,

Therefore, by putting α = 2λ
1−λ−

√
2µ
, we have

∥d(ϑn, ϖn)∥ ≤ α2n∥d(ϑ0, ϖ0)∥
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and

∥d(ϑn, ϖn−1)∥ ≤ α2n−1∥d(ϑ0, ϖ0)∥.

For every m,n ∈ N,

d(ϑn, ϖm) ≾i2 d(ϑn, ϖn) + d(ϑn+1, ϖn) + d(ϑn+1, ϖm)

≾i2 (α2n + α2n+1)d(ϑ0, ϖ0) + d(ϑn+1, ϖm)

≾i2 ...

≾i2 (α2n + α2n+1 + ...+ α2m−1)d(ϑ0, ϖ0) + d(ϑm, ϖm)

≾i2 (α2n + α2n+1 + ...+ α2m)d(ϑ0, ϖ0), if m > n,

∥d(ϑn, ϖm)∥ ≤ (α2n + α2n+1 + ...+ α2m)∥d(ϑ0, ϖ0)∥, if m > n,

and similarly, if m < n, then

d(ϑn, ϖm) ≾i2 (α
2m+1 + α2m+2 + ...+ α2n+1)d(ϑ0, ϖ0),

∥d(ϑn, ϖm)∥ ≤ (α2m+1 + α2m+2 + ...+ α2n+1)∥d(ϑ0, ϖ0)∥.

By α ∈ (0, 1), ∥d(ϑn, ϖm)∥ → 0, as n,m → ∞, we conclude that (ϑn, ϖn) is a

Cauchy bisequence. Since (G,H, d) is complete, (ϑn, ϖn) converges, and biconverges

to a point κ ∈ G ∩ H. Hence, f(ϑn) = ϖn → κ ∈ G ∩ H as n → ∞ implies

d(f(κ), f(ϑn)) → d(f(κ), κ) as n → ∞, by using Lemma 2.3. Also by taking the

limit from

d(f(κ), f(ϑn)) ≾i2 λ[d(ϑn, κ) + d(ϑn, ϖn) + d(f(κ), κ)] +
µd(ϑn, ϖn)d(f(κ), κ)

1 + d(ϑn, ϖn) + d(f(κ), κ)

we obtain

∥d(f(κ), f(ϑn))∥ ≤ λ[∥d(ϑn, κ) + d(ϑn, ϖn) + d(f(κ), κ)∥]

+
µ∥d(ϑn, ϖn)d(f(κ), κ)∥

∥1 + d(ϑn, ϖn) + d(f(κ), κ)∥
,

as n → ∞, we get d(f(κ), κ) = 0. Hence f(κ) = κ. Therefore κ is a fixed point of

f .

If ρ is another fixed point of f , then f(ρ) = ρ, ρ ∈ G ∩H, and hence,

d(κ, ρ) = d(f(κ), f(ρ)) ≾i2 λ[d(κ, ρ) + d(κ, f(κ)) + d(f(ρ), ρ)]

+
µd(κ, f(κ))d(f(ρ), ρ)

1 + d(κ, f(κ)) + d(f(ρ), ρ)
.

Therefore ∥d(κ, ρ)∥ = 0 so that κ = ρ. So f has a UFP. □
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4. Conclusions

All fixed point theorems in bicomplex valued bipolar metric spaces can be re-

garded as generalizations of fixed point theorems in bicomplex valued metric spaces

which are generalization of complex valued metric spaces. Therefore, studies of fixed

point results in bicomplex valued bipolar metric spaces are significant.
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