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an efficient numerical method based on the
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Abstract. In this paper, an efficient numerical method based on operational

matrices of the second kind Chebyshev polynomials is used for the solution of a

coupled system of fractional order integro differential equations that the fractional

derivative is given in Caputo’s sense. The operational matrices of the second

kind Chebyshev polynomials reduces the given equations to a system of linear

algebraic equations. Approximate solution is calculated by extending the functions

in terms of second kind Chebyshev polynomials and applying operational matrices.

Unknown coefficients are obtained by solving final system of linear equations.

Also convergence analysis and error bound of the solution are studied in this

paper. Moreover, to check the reliability and accuracy of the given method. The

numerical examples have been showed and the results of the described method are

compared with the Haar wavelet method. The obtained results authenticate that

the displayed method is effortless to analyze and perform such types of problems.

All methods for the proposed method are applied in MATLAB (R2020b) software.

1. Introduction

The issue of factional calculus (FC) prepare generalized notion of classical cal-

culus. In the last decades, FC has been utilized as a practical tool to model chem-

ical processes, physical, signal processing, viscoelasticity, radiative equilibrium and

diffusion processes that are discovered to be best described by fractional integro
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differential equations (FIDEs) [15, 2, 9, 17, 16]. FIDE plays an important and

main role in many fields of engineering and scientific disciplines such as electric

transmission, radiation, generalized voltage divider, economics and fluid mechan-

ics [14, 27]. It is worth mentioning that with the extension of FC, the action of

many systems can be depicted by applying the FIDEs and fractional differential

systems [18]. The analytical solutions developed for the FIDEs are very few and

are limited to the solution of simple FIDEs, therefore the necessity of solving FIDEs

by applying efficient and effective numerical methods accurately has emerged as an

increasing interest and a key issue for several years in many research fields. Var-

ious researchers applied on the numerical solution of FIDEs. In some instances,

if FIDEs do not have exact solution , then we are interested to discover their ap-

proximate solution. For example, Rawashdeh [28] presented a FIDEs using the

Legendre wavelets method. Saleh et al. [32] proposed a Taylor expansion and Le-

gendre wavelet method to solve FIDEs. Arikoglu and Okozol [1] employed the

fractional differential transform method to solve the FIDEs. Mittal and Nigam [23]

proposed the Adomian decomposition technique to solve the FIDEs. Vanani and

Amnataei [33] used the operational Tau approximation method to solve the FIDEs.

Yang and Hou [39] used the Laplace decomposition method to solve the FIDEs. Mo-

hammed [21] employed the shifted Chebyshev polynomial and least squares meth-

ods to solve the FIDEs. Mahdy and Shwayyea [22] found the numerical solution of

FIDEs by Laguerre polynomials pseudo spectral methods. Sweilam et al. [31] pro-

posed a variational iteration method to solve FIDEs. Nazari and Shahmorad [24]

employed the generalized differential transform method to solve the FIDEs. Xie et

al. [35] proposed a numerical method based on the wavelet methods for solving a

class of FIDEs. Pedas et al. [26] solved FIDEs numerically using a spline colloca-

tion method. Wang and Zhu [34] solved FIDEs numerically using a second kind

Chebyshev wavelets method. Mokhtary [20] solved FIDEs numerically using an

operational Jacobi Tau method. Biazar and Sadri [4] proposed numerical solution

for the class of FIDEs using shifted Jacobi polynomials. The advantage of this new

method with Chebychev polynomials consists mainly in the fact that it is easy to use

and implement but gives good approximations of the solution at a given set of nodes.

Also other authors apply numerical methods to obtain the approximate solutions

of FIDEs, such as, Adomian decomposition technique [10], wavelet techniques [30],

collocation technique [12, 13], Block Pulse functions technique [36, 37, 38], vari-

ational iteration technique [11], combination of the parametric iteration method

and the spectral collocation method [7], Haar wavelet technique [3], Lucas wavelets

and the Legendre–Gauss quadrature rule [8] and fractional order operational matrix

methods [29].

One of the numerical methods to obtain the approximate solutions of FIDEs is

the orthogonal based methods and the main goal of applying orthogonal basis is that



NUMERICAL SOLUTION OF A COUPLED SYSTEM OF FRACTIONAL ... 27

utilizing operational matrices given in terms of an orthogonal basis, the introduced

equations transform into linear or nonlinear algebraic equations. In this paper, we

show a spectral method based on the second kind Chebyshev polynomials to obtain

the approximate solutions of a coupled system of FIDEs that are defined as:

CDµ
t z(t) + z′(t) +

∫ t

0

w(τ)dτ = f(t),

CDν
tw(t) + w′(t) +

∫ t

0

z(τ)dτ = h(t), (1)

subject to the following initial conditions:

z(0) = z′(0) = w(0) = w′(0) = 0, (2)

where CDµ
t and CDν

t show the Caputo fractional derivative operators of orders

µ ∈ (1, 2] and ν ∈ (1, 2] with respect to t, t ∈ [0, 1], respectively. Here f(t), h(t)

are given known functions and z(t), w(t) are an unknown functions. In this pa-

per, applying the spectral method based on operational matrices of the second kind

Chebyshev polynomials (SKCPs) with the Riemann Liouville fractional integral op-

erators respect to t, we decrease the coupled system of FIDEs to systems of algebraic

equations. This method is easy and accurate to implement and performance in solv-

ing Eq. (1).

The outline of this paper is organized as follow. Section 2 gives some prelim-

inaries and basic definitions of the fractional calculus. Moreover, we survey the

SKCPs and show some of their properties. In Section 3, we describe a numerical

method to solve a coupled system of FIDEs. Section 4 reports the convergence anal-

ysis of the system based on the SKCPs. In Section 5, some numerical examples are

demonstrated to test the proposed method and compares the proposed method with

the Haar wavelet method is given in [35] which show that the proposed method is

accurate and efficient. Conclusion is shown in Section 6.

2. Mathematical preliminaries and definitions

In this section, we present some mathematical preliminaries and necessary defi-

nitions of the fractional calculus theory and main properties of the SKCPs that will

be applied further in this paper.

Definition 2.1. The fractional integral operator of order α ≥ 0 for a function

u(t) ∈ L[0, 1] with respect to the variable t in the Riemann-Liouville type is given

in [27, 14] as:

Iαt u(t) =
1

Γ(α)

∫ t

0

(t− s)α−1u(s)ds, (3)
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where Γ(α) is the gamma function. Also, from the Riemann-Liouville fractional

integral operator definition for α ≥ 0 and β > −1, we have:

Iαt t
β =

Γ(β + 1)

Γ(β + α + 1)
tβ+α. (4)

Definition 2.2. The fractional differential operator of a function u(t) ∈ L[0, 1]

with respect to the variable t in Caputo sense is defined as:

CDα
t u(t) = In−α

t

dnu(t)

dtn
=

{
1

Γ(n−α)

∫ t

0
(t− s)n−α−1u(n)(s)ds, α ∈ (n− 1, n], n ∈ N,

dnu(t)
dtn

, α = n.

(5)

Some practical and useful properties of the of the Riemann-Liouville fractional

integral operator and the Caputo fractional differential operator are presented below:

CDα
t I

α
t u(t) = u(t),

Iαt
CDα

t u(t) = u(t)−
n−1∑
j=0

u(j)(0)
tj

j!
, α ∈ (n− 1, n], n ∈ N. (6)

Definition 2.3. The well known SKCPs are given on the interval [−1, 1] and

can be defined with the following recurrence relation:

U0 = 1, U1(x) = 2x,

Uj(x) = 2tUj−1(x)− Uj−2(x), j = 2, 3, . . . . (7)

In order to apply these polynomials on the interval [0, T ], we give the shifted SKCPs

by considering the change of variable x = 2t
T
− 1. Then, shifted SKCPs are defined

by:

ϕj(t) = Uj(
2t

T
− 1), j = 0, 1, 2, . . . , (8)

where Uj is the SKCPs. The analytic model of the shifted SKCPs of degree j is

defined by:

ϕj(t) =

j∑
i=0

(−1)j−i(j + i+ 1)!22j

(j − i)!(2j + 1)!T j
tj. (9)

The orthogonality property for the Shifted SKCPs with respect to the weight func-

tion ω(t) on [0, T ] can be expressed as:∫ T

0

ω(t)ϕm(t)ϕn(t) =

{
Tπ
4
, n = m,

0, m ̸= n,
(10)

where ω(t) =
√

1− (2t
T
− 1)2.
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Theorem 2.1. [25] The Riemann-Liouville fractional integral operator of of

order α for the shifted SKCPs can be expanded in terms of the shifted SKCPs as

follows:

Iαt ϕj(t) ≃
N∑
k=0

∆α
jkϕk(t), (11)

where

∆α
jk =

4(k + 1)Tα

√
π

j∑
l=0

(−1)j−l(j + l + 1)!l!22lΓ(l + α + 3
2
)

(j − l)!(2l + 1)!Γ(j + l + α + 3)Γ(l + α− k + 1)
. (12)

For a function y(t) ∈ L[0, T ], we may also expand its approximation by applying

shifted SKCPs as:

y(t) =
∞∑
k=0

akϕk(t), (13)

where ak is the coefficient and

ak =
4

Tπ

∫ T

0

ω(τ)y(τ)ϕk(τ)dτ, k = 0, 1, 2, . . . . (14)

Hence the function y(t) can be expanded by truncating the infinite series given in

Eq. (13) as follows:

y(t) ≃
N∑
k=0

akϕk(t) = ATΦ(t), (15)

where

A = [a0 a1 . . . aN ]
T ,

Φ(t) = [ϕ0(t) ϕ1(t) . . . ϕN(t)]
T . (16)

3. Description of the suggested methodology for problem (1)

In this section, we describe the numerical method for the approximate solution

of Eq. (1). To this aim, we approximate d2z
∂t2

and d2w
∂t2

applying the shifted second

kind Chebyshev series as follows:

d2z

dt2
=

N∑
i=0

ziϕi(t) = ZTΦ(t), (17)

d2w

dt2
=

N∑
j=0

wjϕj(t) = W TΦ(t), (18)
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where

Z = [z(t0) z(t1) . . . z(tN)]
T ,

W = [w(t0) w(t1) . . . w(tN)]
T . (19)

Integrating from Eqs. (17) and (18) with respect to the variable t, we obtain:

dz

dt
= z′(0) + ZTMΦ(t), (20)

dw

dt
= w′(0) +W TMΦ(t), (21)

where M is the (N + 1)× (N + 1) operational matrix of the first order integration

of the Shifted SKCPs functions vector Φ(t) and

M = [∆1
ij], i, j = 0, 1, . . . , N. (22)

Again, by integrating from Eqs. (20) and (21) with respect to the variable t and

applying Eq. (2), we obtain:

z(t) = z(0) + ZTM2Φ(t), (23)

w(t) = w(0) +W TM2Φ(t). (24)

Now, by taking the Riemann-Liouville fractional integral operator of order µ to both

sides of Eq. (1) and using Eq. (6), yields:

z(t) = Iµt f(t)− Iµt

[
dz
dt
+
∫ t

0
w(τ)dτ

]
, (25)

w(t) = Iνt h(t)− Iνt

[
dw
dt

+
∫ t

0
z(τ)dτ

]
. (26)

The functions f(t) and h(t) in Eqs. (25) and (26) can be expanded in terms of the

shifted second kind Chebyshev series as:

f(t) =
N∑
i=0

fiϕi(t) = F TΦ(t), (27)

h(t) =
N∑
i=0

hiϕi(t) = HTΦ(t), (28)

where

F = [f(t0) f(t1) . . . f(tN)]
T ,

H = [h(t0) h(t1) . . . h(tN)]
T , (29)

where f(ti) and h(ti) for i = 0, 1, . . . , N are known functions. To continue the

method, the second part of the right hand side in Eqs. (25) and (26)can also
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be approximated in terms of the shifted second kind Chebyshev series applying

Eqs. (22), (23) and (24) as follows:∫ t

0

z(τ)dτ =

∫ t

0

ZTM2Φ(τ)dτ = ZTM3Φ(t), (30)∫ t

0

w(τ)dτ =

∫ t

0

W TM2Φ(τ)dτ = W TM3Φ(t). (31)

Substituting Eqs. (20), (21) and (23)-(28), (30) and (31) into Eqs. (25) and (26) and

using Eq. (12), we obtain:

ZTM2Φ(t) = F TM(µ)Φ(t)−
[
ZTMM(µ)Φ(t) +W TM3M(µ)Φ(t)

]
, (32)

W TM2Φ(t) = HTM(ν)Φ(t)−
[
W TMM(ν)Φ(t) + ZTM3M(ν)Φ(t)

]
, (33)

where M(µ) is the (N + 1) × (N + 1) operational matrix of the fractional order

integration of order µ of the Shifted SKCPs functions vector Φ(t) and

M(µ) = [∆µ
ij], i, j = 0, 1, . . . , N, (34)

M(ν) = [∆ν
ij], i, j = 0, 1, . . . , N.

Also, utilizing Eqs. (20), (21), (23) and (24) into the initial conditions considered in

Eq. (2), yields:

ZTM2Φ(0) = ZTMΦ(0) = W TM2Φ(0) = W TMΦ(0) = 0, (35)

In consequence, from Eqs. (32) and (33), we obtain:(
ZTM2 + ZTMM(µ) +W TM3M(µ) − F TM(µ)

)
Φ(t) = 0, (36)(

W TM2 +W TMM(ν) + ZTM3M(ν) −HTM(ν)
)
Φ(t) = 0. (37)

Finally, we have:

ZTM2 + ZTMM(µ) +W TM3M(µ) − F TM(µ) = 0, (38)

W TM2 +W TMM(ν) + ZTM3M(ν) −HTM(ν) = 0. (39)

To compute the unknown parameters we apply the collocation points m
N+2

T, m =

1, 2, . . . , N + 1. By solving Eqs. (38) and (39) associated with the initial conditions

given in Eq. (35), we can find the unknown parameters Z,W and we can get the

numerical solution of Eq. (1). Consequently, we can approximately obtain z(t), w(t)

applying Eqs. (23) and (24).
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4. Convergence and error analysis

In this section, the convergence and error analysis of the derived numerical so-

lution based on Shifted SKCPs are investigated. To do this purpose, we suppose

that the determined functions in Eq. (1) provide the cases that the exact solutions

z(t), w(t) belongs to the Sobolev space Hn+1
(
(0, T )

)
, that n ≥ 0. By applying

properties of Sobolev spaces [6, 5], we gain the following results.

Theorem 4.1. [25] Let u(t) ∈ Hn+1
(
(0, T )

)
and PN(u(t)) =

∑N
k=0 ukϕk(t) be

the truncated SKC series of the function u(t). Then, we have:

|EN(u)| = |u(t)− PN(u(t))| = O
(
N−n+1

)
, (40)

when N → ∞ for all t ∈ (0, T ).

Theorem 4.2. [19] Let u(t) ∈ [0, 1] be N times continuously differentiable and

uN(t) =
∑N

i=0 uiϕi(t) = UTΦ(t) be its best square approximation function. Then we

have:

∥u(t)− uN(t)∥ ≤ λQN+1

(N + 1)!

√
π

8
, (41)

where λ = maxt∈[0,1] u
N+1(t) and Q = max[t0, 1− t0].

4.1. Convergence analysis. In order to display the convergence analysis of

Eq. (1), we consider the error functions EN(z) = z(t)− zN(t) and EN(w) = w(t)−
wN(t), that z(t), w(t) are the exact solutions of Eq. (1), and zN(t), wN(t) are their

approximation obtained by the proposed method, respectively. Then from Eqs. (25)

and (26), we have:

zN(t) = Iµt f(t)− Iµt

[
dzN
dt

+
∫ t

0
wN(τ)dτ

]
+R1(t), (42)

wN(t) = Iνt h(t)− Iνt

[
dwN

dt
+
∫ t

0
zN(τ)dτ

]
+R2(t). (43)

where R1(t), R2(t) are the residue terms and f(t) = F TΦ(t), h(t) = HTΦ(t). Now,

by subtracting Eqs. (25) and (26) from Eqs. (42) and (43), we get:

|R1(t)| ≤ |z(t)− zN(t)|+ |Iµt f(t)− Iµt F
TΦ(t)|+ |Iµt z′(t)− Iµt z

′
N(t)|

+|Iµt
( ∫ t

0
w(τ)dτ

)
− Iµt

( ∫ t

0
wN(τ)dτ

)
|, (44)

|R2(t)| ≤ |w(t)− wN(t)|+ |Iµt h(t)− Iµt H
TΦ(t)|+ |Iµt w′(t)− Iµt w

′
N(t)|

+|Iµt
( ∫ t

0
z(τ)dτ

)
− Iµt

( ∫ t

0
zN(τ)dτ

)
|. (45)

(46)
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By applying Theorem 4.1, when N → ∞, we gain the following approximations:

|z(t)− zN(t)| = O
(
N−n+1

)
,

|Iµt f(t)− Iµt F
TΦ(t)| = O

(
N−n+1

)
,

|Iµt z′(t)− Iµt z
′
N(t)| = O

(
N−n+1

)
, (47)

|Iµt
(∫ t

0

w(τ)dτ
)
− Iµt

( ∫ t

0

wN(τ)dτ
)
| = O

(
N−n+1

)
.

Therefore

|R1(t)| → 0. (48)

Similar to above relation, we get:

|R2(t)| → 0. (49)

5. Numerical examples

This Section illustrates several numerical examples to present the effectiveness,

practicability and accuracy of the proposed Shifted SKCPs method. In order to

show the error of the method we consider the following notation:

∥EN(z)∥2 =
(∫ T

0

ω(τ)E2
N(z)(τ)dτ

) 1
2
,

∥EN(w)∥2 =
(∫ T

0

ω(τ)E2
N(w)(τ)dτ

) 1
2
. (50)

Here we consider T = 1. All the numerical computations are carried out with the

mathematical software MATLAB(R2020b). Also comparison of the absolute error

of the computed numerical solution by the proposed method with the Haar wavelet

method is introduced in [35], is illustrated.

Table 1. Absolute error EN(z) for various values N for Example 5.1.

t N = 8 N = 16 N = 32 N = 64

Our method
1
8

1.541210e− 22 2.865625e− 23 4.695556e− 24 6.036376e− 26
2
8

6.164843e− 22 1.146250e− 22 1.878222e− 23 2.414550e− 25
3
8

1.387089e− 21 2.579062e− 22 4.226000e− 23 5.432739e− 25
4
8

2.465937e− 21 4.585000e− 22 7.512890e− 23 9.658203e− 25
5
8

3.853027e− 21 7.164062e− 22 1.173889e− 22 1.509094e− 24
6
8

5.548359e− 21 1.031625e− 21 1.690400e− 22 2.173095e− 24
7
8

7.551933e− 21 1.404156e− 21 2.300822e− 22 2.957824e− 24
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t

0
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0.6

0.7

0.8

0.9

1

z
N

(t
)

Exact

N=64

N=32

N=16

N=8

Figure 1. Numerical and exact solutions of the Example 5.1 for dif-

ferent values of N .

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

t

-1

-0.9

-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

w
N

(t
)

N=8

N=16

N=32

N=64

Exact

Figure 2. Numerical and exact solutions of the Example 5.1 for dif-

ferent values of N .

Example 5.1. Consider the following FIDEs as [35]:

CD1.5
t z(t) + z′(t) +

∫ t

0

w(τ)dτ = f(t),

CD1.25
t w(t) + w′(t) +

∫ t

0

z(τ)dτ = h(t), (51)

with the following initial conditions:

z(0) = z′(0) = 0, w(0) = w′(0) = 0, (52)
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Table 2. Absolute error EN(w) for various values N for Example 5.1.

t N = 8 N = 16 N = 32 N = 64

Our method
1
8

4.359202e− 22 8.105211e− 23 1.328103e− 23 1.707345e− 25
2
8

1.232968e− 21 2.292500e− 22 3.756445e− 23 4.829101e− 25
3
8

2.265108e− 21 4.211591e− 22 6.901030e− 23 8.871626e− 25
4
8

3.487362e− 21 6.484169e− 22 1.062483e− 22 1.365876e− 24
5
8

4.873736e− 21 9.061901e− 22 1.484865e− 22 1.908869e− 24
6
8

6.406693e− 21 1.191217e− 21 1.951906e− 22 2.509274e− 24
7
8

8.073356e− 21 1.501106e− 21 2.459682e− 22 3.162047e− 24

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

t

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

z
N

(t
)

Exact

N=64

N=32

N=16

N=8

Figure 3. Numerical and exact solutions of the Example 5.2 for dif-

ferent values of N .

where

f(t) = 4√
π
t0.5 + 2t− 2

5
t2.5,

h(t) = Γ(2.5)
Γ(1.25)

t0.25 − 1.5t0.5 + 1
3
t3. (53)

The exact solutions of this system are z(t) = t2 and w(t) = −t1.5. We have applied

the proposed method to this system and demonstrated graphically the numerical

results between the numerical solutions proposed by the presented method and the

exact solutions of Eq. (51) with N = 8, 16, 32, 64 in Figs. 1 and 2. The authors of

[35] applied Haar wavelet method to solve this system. The absolute error obtained

by using the our method with N = 8, 16, 32, 64 are reported in Tables 1 and 2. From

Tables 1 and 2, we see that the proposed method is an effective and practicable tool

for solving this system.
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0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

t

-0.15

-0.1

-0.05

0

w
N

(t
)

Exact

N=64

N=32

N=16

N=8

Figure 4. Numerical and exact solutions of the Example 5.2 for dif-

ferent values of N .

Table 3. Comparison of absolute error EN(z) with various values of

N for Example 5.2.

t N = 8 N = 16 N = 32 N = 64

Our method
1
8

1.733862e− 22 3.223828e− 23 5.282501e− 24 6.790924e− 26
2
8

7.706054e− 22 1.432812e− 22 2.347778e− 23 3.018188e− 25
3
8

1.907248e− 21 3.546210e− 22 5.810751e− 23 7.470016e− 25
4
8

3.698906e− 21 6.877500e− 22 1.126933e− 22 1.448730e− 24
5
8

6.261169e− 21 1.164160e− 21 1.907569e− 22 2.452278e− 24
6
8

9.709628e− 21 1.805343e− 21 2.958200e− 22 3.802917e− 24
7
8

1.415987e− 20 2.632792e− 21 4.314042e− 22 5.545921e− 24

Haar wavelet method [35]
1
8

2.371827e− 5 9.372818e− 7 4.231908e− 7 7.902391e− 9
2
8

4.378379e− 5 3.476292e− 6 5.373637e− 7 9.379809e− 9
3
8

6.261838e− 5 5.371987e− 6 6.749280e− 7 3.293890e− 8
4
8

7.049200e− 5 6.372830e− 6 8.318309e− 7 4.238209e− 8
5
8

8.381098e− 5 8.381903e− 6 2.447810e− 6 6.351738e− 8
6
8

2.361873e− 4 9.748292e− 6 3.183190e− 6 7.487310e− 8
7
8

3.012919e− 4 1.371298e− 5 3.489318e− 6 8.127288e− 8
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Table 4. Comparison of absolute error EN(w) with various values of

N for Example 5.2.

t N = 8 N = 16 N = 32 N = 64

Our method
1
8

1.348559e− 22 2.507421e− 23 4.108612e− 24 5.281829e− 26
2
8

4.623632e− 22 8.596875e− 23 1.408666e− 23 1.810913e− 25
3
8

8.669311e− 22 1.611914e− 22 2.641250e− 23 3.395462e− 25
4
8

1.232968e− 21 2.292500e− 22 3.756445e− 23 4.829101e− 25
5
8

1.444885e− 21 2.686523e− 22 4.402084e− 23 5.659103e− 25
6
8

1.387089e− 21 2.579062e− 22 4.226000e− 23 5.432739e− 25
7
8

9.439916e− 22 1.755195e− 22 2.876028e− 23 3.697280e− 25

Haar wavelet method [35]
1
8

3.472093e− 5 9.029109e− 7 3.039091e− 7 3.480938e− 8
2
8

5.312731e− 5 3.319820e− 6 5.380936e− 7 5.361870e− 8
3
8

5.938319e− 5 4.381098e− 6 6.472987e− 7 6.371091e− 8
4
8

6.738170e− 5 6.419302e− 6 7.371873e− 7 8.381038e− 8
5
8

7.381092e− 5 7.981023e− 6 9.463619e− 7 2.479837e− 7
6
8

8.849200e− 5 8.251735e− 6 1.237297e− 6 4.328102e− 7
7
8

2.371980e− 4 9.498249e− 6 2.383010e− 6 5.381098e− 7

Table 5. Comparison of 2-norm errors ∥EN(z)∥2 and ∥EN(w)∥2 with
various values of N for Example 5.2.

N = 16 N = 32 N = 64

Our method

∥EN(z)∥2 3.9326e− 12 1.5919e− 12 1.8049e− 13

∥EN(w)∥2 1.6520e− 12 6.6873e− 13 7.5822e− 14

Haar wavelet method [35]

3.478023e− 4 6.371379e− 5 9.371983e− 7

5.371897e− 4 8.381098e− 5 2.387639e− 6

Example 5.2. Consider the following FIDEs as [35]:

CD1.75
t z(t) + z′(t) +

∫ t

0

w(τ)dτ = f(t),

CD1.75
t w(t) + w′(t) +

∫ t

0

z(τ)dτ = h(t), (54)

subject to the following initial conditions:

z(0) = z′(0) = 0, w(0) = w′(0) = 0, (55)
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where

f(t) = 6
Γ(2.25)

t1.25 + 3t2 + 2t+ t3(3t−4)
12

,

h(t) = 6
Γ(2.25)

t1.25 + 3t2 − 2t+ t3(3t+4)
12

. (56)

The exact solutions of Eq. (54) subject to the given initial conditions are z(t) =

t2(t+1) and w(t) = t2(t−1). We have used the proposed method to this system and

illustrated a comparison between the numerical solutions proposed by the method

to the exact solutions of Eq. (54) with N = 8, 16, 32, 64 in Figs. 3 and 4. Tables 3

and 4 compares the absolute errors between the exact and numerical solutions given

by both the our method and the Haar wavelet method [35] to this system, with

N = 8, 16, 32, 64. Due to Tables 3 and 4, the our method show more accurate

solutions by applying only a small number of the basis functions. Also, Tables 3, 4

and 5 present that our method can get a higher convergence result when N = 64.

6. Conclusion

In this paper, a numerical method based on the shifted SKCPs and their op-

erational matrix of fractional integration has been demonstrated for approximate

solutions of a coupled system of FIDEs. The fractional order derivative is given in

the Caputo sense. By using this operational matrix and properties of the shifted

SKCPs we reduced the main coupled system to the coupled system of solving a

system of algebraic systems. By solving the linear systems, approximate solutions

are calculated. The convergence analysis of the method was widely investigated.

Finally several examples are given to demonstrate the practical efficiency and ap-

plicability of the described method for solving coupled system of FIDEs and the

obtained numerical results were compared with exact solutions. The outcomes of

the present method have introduced very good accuracy over the cited work [35].

Matlab was applied for computations in this paper.
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