Mathematical Analysis and its Contemporary Applications

Volume 3, Issue 4, 2021, 9–12

doi: 10.30495/maca.2021.1935853.1020

ISSN 2716-9898

On closedness of convolution of two sets

Seyyed Mohammad Tabatabaie

ABSTRACT. In this note, we give an abstract version of the fact that convolution of two closed and compact subsets of a hypergroup is a closed set.

1. Introduction and Preliminaries

It is well-known that if B and C are closed and compact subsets of a locally compact group (G, \cdot) , respectively, then the product $B \cdot C := \{x \cdot y : x \in B, y \in C\}$ is closed in G, although the product of two closed subsets of G is not closed in general. Let X and Y be two non-empty sets and $A \subseteq X \times Y$. We denote

$$\pi_X(A) := \{x \in X : \text{ for some } y \in Y, \, (x,y) \in A\}$$

and

$$\pi_Y(A) := \{ y \in Y : \text{ for some } x \in X, (x, y) \in A \}.$$

H. Przybycień in [5] gave the following abstract version of the above fact.

Theorem 1.1. Let X, Y and Z be Hausdorff topological spaces and $f: X \times Y \rightarrow Z$ be a continuous function such that:

- (1) for every $y \in Y$ the function $f(\cdot, y)$ is an injection,
- (2) there exists a continuous function $\varphi: Y \times Z \to X$ such that $f(\varphi(y, z), y) = z$ for all $(y, z) \in Y \times Z$.

If $A \subseteq X \times Y$ is a closed set such that $\pi_Y(A)$ is compact, then the image f(A) is closed in Z.

Our motivation for writing this work is to give an improvement of this theorem. For this, we need to recall a special topology on the family of all non-empty compact subsets of a topological space which was defined in [6] and studied in [4] too.

Key words and phrases. locally compact group, locally compact hypergroup, Michael topology

This work is licensed under the Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

²⁰¹⁰ Mathematics Subject Classification. 43A62, 46A22.

Definition 1.1. Let (X, τ) be a Hausdorff topological space. The family of all non-empty compact subsets of X is denoted by $\mathcal{K}(X)$. For each $A, B \subseteq X$ we denote

$$V_A(B) := \{ D \in \mathcal{K}(X) : D \subseteq B, \ D \cap A \neq \emptyset \}.$$

Then, the topology generated by the subbasis

$$\{V_A(B): A, B \subseteq X \text{ are open}\}$$

is called *Michael topology* in [3] and is denoted by 2^{τ} .

Michael topology plays a key role in theory of harmonic analysis on locally compact hypergroups.

Let K be a locally compact Hausdorff space. We denote the space of all bounded Radon measures on K by $\mathcal{M}(K)$, and the set of non-negative elements of $\mathcal{M}(K)$ is denoted by $\mathcal{M}^+(K)$. The support of each measure $\mu \in \mathcal{M}(K)$ is denoted by supp μ . Also, the Dirac measure at the point $x \in K$ is denoted by δ_x .

Definition 1.2. Let K be a locally compact Hausdorff space with the following property:

- (1) there is a mapping $*: \mathcal{M}(K) \times \mathcal{M}(K) \to \mathcal{M}(K)$ (called *convolution*) such that $(\mathcal{M}(K), *, +)$ is a complex Banach algebra;
- (2) for each $\mu, \nu \in \mathcal{M}^+(K)$, $\mu * \nu$ is a non-negative measure in $\mathcal{M}(K)$ and the mapping $(\mu, \nu) \mapsto \mu * \nu$ from $\mathcal{M}^+(K) \times \mathcal{M}^+(K)$ into $\mathcal{M}^+(K)$ is continuous, where $\mathcal{M}^+(K)$ is equipped with the cone topology;
- (3) for all $x, y \in K$, $\delta_x * \delta_y$ is a compact supported probability measure;
- (4) the mapping $(x, y) \mapsto \text{supp}(\delta_x * \delta_y)$ from $K \times K$ into $\mathcal{K}(K)$ equipped with the Michael topology, is continuous;
- (5) there is an element e such that for each $x \in K$, $\delta_e * \delta_x = \delta_x = \delta_x * \delta_e$;
- (6) there is a homeomorphism $x \mapsto x^-$ from K onto K (called *involution*) such that for each $x, y \in K$ we have $(x^-)^- = x$ and $(\delta_x * \delta_y)^- = \delta_{y^-} * \delta_{x^-}$;
- (7) for each $x, y \in K$, $e \in \text{supp}(\delta_x * \delta_y)$ if and only if $x = y^-$.

Then, $K \equiv (K, *, .^-, e)$ is called a (locally compact) hypergroup.

For each subsets A, B of a locally compact hypergroup K we denote

$$A * B := \bigcup_{x \in A, y \in B} \operatorname{supp}(\delta_x * \delta_y).$$

2. Main Result

By identifying x and the singleton $\{x\}$, one can easily see that the theorem below is a generalization of Theorem 1.1. This theorem gives also some sufficient conditions for union of a collection of compact sets to be closed. Here, the family of all non-empty compact subsets of a Hausdorff topological space is equipped with Michael topology.

Theorem 2.1. Let X, Y and Z be locally compact Hausdorff spaces and $f: X \times Y \to \mathcal{K}(Z)$ be a function. Let there exists a continuous function $\phi: Y \times Z \to \mathcal{K}(X)$ such that for each $x \in X$, $y \in Y$ and $z \in Z$,

$$z \in f(x,y)$$
 if and only if $x \in \phi(y,z)$. (1)

Let $A \subseteq X \times Y$ be a rectangle such that $\pi_X(A)$ is a closed subset of X and $\pi_Y(A)$ is a compact subset of Y. Then, $\bigcup_{(x,y)\in A} f(x,y)$ is a closed subset of Z. (We have considered the product topology on $X \times Y$ and $Y \times Z$.)

PROOF. Suppose that (z_{α}) is a net in $\bigcup_{(x,y)\in A} f(x,y)$, $z_0 \in Z$ and $z_{\alpha} \to z_0$ in Z. Then, for each index α there exists (x_{α}, y_{α}) in A such that $z_{\alpha} \in f(x_{\alpha}, y_{\alpha})$, and so (y_{α}) is a net in $B := \pi_Y(A)$. This also implies that $x_{\alpha} \in \phi(y_{\alpha}, z_{\alpha})$. Because of compactness of $\pi_Y(A)$, there exist $y_0 \in \pi_Y(A)$ and a subnet (y_{β}) of (y_{α}) such that $y_{\beta} \to y_0$ in Y. Let F be a compact neighborhood of z_0 in Z. Then, there exists some η such that

$$x_{\beta} \in \phi(y_{\beta}, z_{\beta}) \in \phi(B \times F) \tag{2}$$

for all $\beta \geq \eta$. Since ϕ is continuous and $B \times F$ is compact, $\phi(B \times F)$ is compact in $\mathcal{K}(X)$. So, by $[\mathbf{3}, 2.5F]$, the set $\bigcup_{y \in B, z \in F} \phi(y, z)$ is a compact subset of X. Therefore, (without loss the generality, by taking a subnet) there exists an element $x_0 \in X$ such that $x_\beta \to x_0$. Since x_β belongs to the closed set $\pi_X(A)$ for all index β , we have $x_0 \in \pi_X(A)$. Since ϕ is continuous, we have

$$\phi(y_{\beta}, z_{\beta}) \to \phi(y_0, z_0) \tag{3}$$

in $\mathcal{K}(X)$. We show that $x_0 \in \phi(y_0, z_0)$. In contrast, assume that $x_0 \notin \phi(y_0, z_0)$. Since $\phi(y_0, z_0)$ is compact, there is a compact neighborhood E of x_0 in X such that $\phi(y_0, z_0) \cap E = \emptyset$. So, $\phi(y_0, z_0) \in V_X(E^c)$. By (3), there exists some γ such that for each $\beta \geq \gamma$, $\phi(y_\beta, z_\beta) \in V_X(E^c)$. Consequently, $x_\beta \in \phi(y_\beta, z_\beta) \subseteq E^c$. Since E is a neighborhood of x_0 , this contradicts the fact $x_\beta \to x_0$. Thus, $x_0 \in \phi(y_0, z_0)$, and equivalently, $z_0 \in f(x_0, y_0)$. This completes the proof.

The next fact which was given in [3, Lemma 4.1E] would be a direct conclusion of Theorem 2.1.

Corollary 2.2. Let K be a locally compact hypergroup, C be a compact subset of K, and B be a closed subset of K. Then, B * C is closed in K.

PROOF. In theorem 2.1 put X = Y = Z := K, $A := B \times C$, $f(x, y) := \{x\} * \{y\}$ and $\phi(y, z) := \{z\} * \{y^-\}$. Now, by [3, Lemma 4.1B] one can see that the condition (1) in Theorem 2.1 holds, and so the proof is complete.

References

1. W. R. Bloom and H. Heyer, *Harmonic analysis of probability measures on hypergroups*, De Gruyter, Berlin, 1995.

- 2. C. F. Dunkl, *The measure algebra of a locally compact hypergroup*, Trans. Amer. Math. Soc., **179** (1973), 331-348.
- 3. R. I. Jewett, Spaces with an abstract convolution of measures, Adv. Math., 18(1975), 1-101.
- 4. E. Michael, Topologies on spaces of subsets, Trans. Amer. Math. Soc., 71(1951), 152-182.
- 5. H. Przybycień, A note on closedness of algebraic sum of sets, Tbilisi Math. J., $\mathbf{9}(2)(2016)$, 71-74.
- 6. L. Vietoris, Bereiche zweiter ordnung, Monatsh. Math. Phys., 33(1923), 49-62.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF QOM, QOM, IRAN *Email address*: sm.tabatabaie@qom.ac.ir,

 $Received: June~~2021\\ Accepted: September~~2021$