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An existence result for a class of

(p(x), q(x))-Laplacian system via sub-supersolution

method

Saleh Shakeri

Abstract. This study concerns the existence of positive solution for the following

nonlinear boundary value problem

−∆p(x)u = a(x)h(u) + f(v) in Ω

−∆q(x)v = b(x)k(v) + g(u) in Ω

u = v = 0 on ∂Ω

where p(x), q(x) ∈ C1(RN ) are radial symmetric functions such that sup |∇p(x)| <
∞,

sup |∇q(x)| < ∞ and 1 < inf p(x) ≤ sup p(x) < ∞, 1 < inf q(x) ≤ sup q(x) < ∞,

and where −∆p(x)u = −div |∇u|p(x)−2∇u,−∆q(x)v = −div |∇v|q(x)−2∇v respec-

tively are called p(x)-Laplacian and q(x)-Laplacian, Ω = B(0, R) = {x||x| < R}
is a bounded radial symmetric domain, where R > 0 is a sufficiently large con-

stant. We discuss the existence of positive solution via sub-supersolutions without

assuming sign conditions on f(0) and g(0).

1. Introduction

The study of differential equations and variational problems with nonstandard

p(x)-growth conditions has been a new and interesting topic. Many results have

been obtained on this kind of problems; see for example [3, 4, 5, 6, 7, 8, 13]. In

[5, 6] Fan and Zhao give the regularity of weak solutions for differential equations
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with nonstandard p(x)-growth conditions. Zhang [11] investigated the existence of

positive solutions of the system

−∆p(x)u = f(v) in Ω

−∆p(x)v = g(u) in Ω

u = v = 0 on ∂Ω

(1)

where p(x) ∈ C1(RN) is a function, Ω ⊂ RN is a bounded domain. The operator

−∆p(x)u = − div |∇u|p(x)−2∇u) is called p(x)-Laplacian. Especially, if p(x) is a

constant p, System (1) is the well-known p-Laplacian system.

There are many papers on the existence of solutions for p-Laplacian elliptic

systems, for example [1, 3, 4, 5, 6, 7, 8, 9].

In [9] the authors consider the existence of positive weak solutions for the p-

Laplacian problem

−∆pu = f(v) in Ω

−∆pv = g(u) in Ω

u = v = 0 on ∂Ω .

(2)

There the first eigenfunctions is used for constructing the subsolution of p-Laplacian

problems. Under the condition limu→+∞ f(M(g(u))1/(p−1)/up−1 = 0, for all M > 0,

the authors show the existence of positive solutions for problem (2). In this paper

we consider the existence of positive solutions of the system

−∆p(x)u = F (x, u, v) in Ω

−∆q(x)v = G(x, u, v) in Ω

u = v = 0 on ∂Ω

(3)

where p(x), q(x) ∈ C1(RN) is a function, F (x, u, v) = [a(x)h(u)+f(v)], G(x, u, v) =

[b(x)k(v) + g(u)], and Ω ⊂ RN is a bounded domain. The final conclusion can

be done by a standard argument via Perron’s method (a method for solving the

Dirichlet problem for the Laplace equation based on the properties of subharmonic

functions). Perron (see [14]) gave the initial presentation of the method, which was

substantially developed by Wiener and Keldysh in [15]).

To study p(x)-Laplacian problems, we need some theory on the spaces Lp(x)(Ω),

W 1,p(x)(Ω) and properties of p(x)-Laplacian which we will use later (see [4]). If

Ω ⊂ RN is an open domain, write

C+(Ω) = {h : h ∈ C(Ω), h(x) > 1 for x ∈ Ω}

h+ = supx∈Ω h(x), h
− = infx∈Ω h(x), for any h ∈ C(Ω), Lp(x)(Ω) = {u|u is a

measurable real-valued function,
∫
Ω
|u|p(x)dx <∞}.

Throughout the paper, we will assume that p, q ∈ C+(Ω) and 1 < infx∈RN p(x) ≤
supx∈RN p(x) < N , 1 < infx∈RN q(x) ≤ supx∈RN q(x) < N . We introduce the norm
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on Lq(x)(Ω)by

|u|p(x) = inf{λ > 0 :

∫
Ω

|u(x)
λ

|p(x)dx ≤ 1},

and (Lp(x)(Ω), |·|p(x)) becomes a Banach space, we call it generalized Lebesgue space.

The space (Lp(x)(Ω), |·|p(x)) is a separable, reflexive and uniform convex Banach space

(see [4, Theorem 1.10, 1.14]).

The spaceW 1,p(x)(Ω) is defined byW 1,p(x)(Ω) = {u ∈ Lp(x)(Ω) : |∇u| ∈ Lp(x)(Ω)},
and it is equipped with the norm

∥u∥ = |u|p(x) + |∇u|p(x), ∀u ∈ W 1,p(x)(Ω).

We denote by W
1,p(x)
0 (Ω) the closure of C∞

0 (Ω) in W 1,p(x)(Ω). W 1,p(x)(Ω) and

W
1,p(x)
0 (Ω) are separable, reflexive and uniform convex Banach space (see [4, Theo-

rem 2.1]). We define

(L(u), v) =

∫
RN

|∇u|p(x)−2∇u∇vdx, ∀u, v ∈ W 1,p(x)(Ω),

then L : W 1,p(x)(Ω) → (W 1,p(x)(Ω))∗ is a continuous, bounded and is a strictly

monotone operator, and it is a homeomorphism [7, Theorem 3.11].

if (u, v) ∈ (W
1,p(x)
0 (Ω),W

1,q(x)
0 (Ω)), (u, v) is called a weak solution of (??); if it

satisfies ∫
Ω

|∇u|p(x)−2∇u∇φdx =

∫
Ω

λF (x, u, v)φdx, ∀φ ∈ W
1,p(x)
0 (Ω),∫

Ω

|∇v|q(x)−2∇v∇ψdx =

∫
Ω

λG(x, u, v)ψdx, ∀ψ ∈ W
1,q(x)
0 (Ω).

We make the following assumptions

(H1) p(x), q(x) ∈ C1(RN) is a radial symmetric and sup |∇p(x)| <∞, sup |∇q(x)| <
∞

(H2) Ω = B(0, R) = {x||x| < R} is a ball, where R > 0 is a sufficiently large

constant.

(H3) h, k ∈ C1([0,∞)) are nonnegative, nondecreasing functions such that

lim
u→+∞

h(u)

up−−1
= 0, lim

u→+∞

k(v)

uq−−1
= 0 .

(H4) f, g ∈ C1([0,∞)) are nondecreasing functions, limu→+∞ f(u) = +∞,

limu→+∞ g(u) = +∞, and

lim
u→+∞

f(M(g(u))
1

q−−1 )

up−−1
= 0, ∀M > 0 .

(H5) a, b : [0,+∞) → (0,∞) are continuous functions such that a1 = minx∈Ω̄ a(x),b1 =

minx∈Ω̄ b(x) ,a2 = maxx∈Ω̄ a(x) and b2 = maxx∈Ω̄ a(x).

We shall establish the following result.
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2. Main result

Theorem 2.1. If (H1)–(H5) hold, then (3) has a positive solution.

Proof. We establish this theorem by constructing a positive subsolution (ϕ1, ϕ2)

and supersolution (z1, z2) of (3), such that ϕ1 ≤ z1 and ϕ2 ≤ z2. That is (ϕ1, ϕ2)

and (z1, z2) satisfy

∫
Ω

|∇ϕ1|p(x)−2∇ϕ1 · ∇φdx ≤
∫
Ω

a(x)h(ϕ1)φdx+

∫
Ω

f(ϕ2)φdx,∫
Ω

|∇ϕ2|q(x)−2∇ϕ1 · ∇ψdx ≤
∫
Ω

b(x)k(ϕ2)ψdx+

∫
Ω

g(ϕ1)ψdx,∫
Ω

|∇z1|p(x)−2∇z1 · ∇φdx ≥
∫
Ω

a(x)h(z1)φdx+

∫
Ω

f(z2)φdx,∫
Ω

|∇z2|q(x)−2∇z2 · ∇ψdx ≥
∫
Ω

b(x)k(z2)ψdx+

∫
Ω

g(z1)ψdx,

for all (φ, ψ) ∈ (W
1,p(x)
0 (Ω),W

1,q(x)
0 (Ω)) with φ, ψ ≥ 0. Then (3) has a positive

solution.

Step 1. We construct a subsolution of (3). Denote

α1 =
inf p(x)− 1

4(sup |∇p(x)|+ 1)
, R1 =

R− α1

2
,

α2 =
inf q(x)− 1

4(sup |∇q(x)|+ 1)
, R2 =

R− α2

2
, b = min{h(0)a1 + f(0), k(0)b1 + h(0),−1},

and let

ϕ1(r) =



e−k(r−R) − 1, 2R1 < r ≤ R,

eαk − 1 +
∫ 2R1

r
(keαk)

p(2R1)−1
p(r)−1

×[ (2R1)N−1

rN−1 sin(ε(r − 2R1) +
π
2
)(a1 + 1)]

1
p(r)−1dr, 2R1 − π

2ε
< r ≤ 2R1,

eαk − 1 +
∫ 2R1

2R1− π
2ε
(keαk)

p(2R1)−1
p(r)−1

×[ (2R1)N−1

rN−1 sin(ε0(r − 2R1) +
π
2
)(a1 + 1)]

1
p(r)−1dr, r ≤ 2R1 − π

2ε
,
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where R1 is sufficiently large, ε is a small positive constant which satisfies R1 ≤
2R1 − π

2ε
, and let

ϕ2(r) =



e−k(r−R) − 1, 2R2 < r ≤ R,

eαk − 1 +
∫ 2R2

r
(keαk)

q(2R2)−1
q(r)−1

×[ (2R2)N−1

rN−1 sin(ε(r − 2R2) +
π
2
)(b1 + 1)]

1
q(r)−1dr, 2R1 − π

2ε
< r ≤ 2R2,

eαk − 1 +
∫ 2R2

2R2− π
2ε
(keαk)

q(2R2)−1
q(r)−1

×[ (2R2)N−1

rN−1 sin(ε0(r − 2R2) +
π
2
)(b1 + 1)]

1
q(r)−1dr, r ≤ 2R2 − π

2ε
,

where R2 is sufficiently large, ε is a small positive constant which satisfies R2 ≤
2R2 − π

2ε
,

In the following, we will prove that (ϕ1, ϕ2) is a subsolution of (3). Since

ϕ′
1(r) =


e−k(r−R) − 1, 2R1 < r ≤ R,

−(keαk)
p(2R1)−1
p(r)−1

×[ (2R1)N−1

rN−1 sin(ε1(r − 2R1) +
π
2
)(a1 + 1)]

1
p(r)−1dr, 2R1 − π

2ε1
< r ≤ 2R1,

0, 0 ≤ r ≤ 2R1 − π
2ε1
,

and

ϕ′
2(r) =


e−k(r−R) − 1, 2R2 < r ≤ R,

−(keαk)
q(2R1)−1
q(r)−1

×[ (2R2)N−1

rN−1 sin(ε2(r − 2R2) +
π
2
)(b1 + 1)]

1
q(r)−1dr, 2R2 − π

2ε2
< r ≤ 2R1,

0, 0 ≤ r ≤ 2R2 − π
2ε2
,

it is easy to see that ϕ1, ϕ2 ≥ 0 is decreasing and ϕ1, ϕ2 ∈ C1([0, R]), ϕ1(x) =

ϕ1(|x|) ∈ C1(Ω̄) and ϕ2(x) = ϕ2(|x|) ∈ C1(Ω̄).Let r = |x|. By computation,

−∆p(x)ϕ1 = − div |∇ϕ(x)|p(x)−2∇ϕ(x)) = −(rN−1|ϕ′(r)|p(r)−2ϕ′(r))′/rN−1.

Then

−∆p(x)ϕ1 =



(ke−k(r−R))p(r)−1
[
− k(p(r)− 1) + p′(r) ln k

−kp′(r)(r −R) + N−1
r

]
, 2R1 < r ≤ R,

ε1(
2R1

r
)N−1(keαk)(p(2R1)− 1)

× cos(ε1(r − 2R1) +
π
2
)(a1 + 1), 2R1 − π

2ε1
< r ≤ 2R1,

0, 0 ≤ r ≤ 2R1 − π
2ε1
,

If k is sufficiently large, when 2R1 < r ≤ R, then

−∆p(x)ϕ1 ≤ −k[inf p(x)− 1− sup |∇p(x)|( ln k
k

+R− r) +
N − 1

kr
] ≤ −kα1.
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Since α1 is a constant dependent only on p(x), if k is a big enough, such that

−kα1 < b, and since ϕ(x) ≥ 0 and h, f are monotone, this implies

−∆p(x)ϕ1 ≤ h(0)a1 + f(0) ≤ a(x)h(ϕ1) + f(ϕ1), 2R1 < |x| ≤ R . (4)

If k is sufficiently large, then

h(ea2k − 1) ≥ 1, f(ea1k − 1) ≥ 1, k(ea1k − 1) ≥ 1, g(ea2k − 1) ≥ 1

where k is dependent on h, f, k, g and p, q and independent on R. Since

−∆p(x)ϕ1 = ε1(
2R1

r
)N−1(kea1k)(p(2R1)− 1) cos(ε1(r − 2R1) +

π

2
)(a1 + 1)

≤ ε1(a1 + 1)2Nkp
+

ea1kp
+

, 2R1 −
π

2ε1
< |x| < 2R1 .

Let ε1 = 2−Nk−p+e−a1kp+ . Then

−∆p(x)ϕ ≤ a1 + 1 ≤ a(x)h(ϕ1) + f(ϕ1), 2R1 −
π

2ε1
< |x| < 2R1. (5)

Obviously,

−∆p(x)ϕ1 = 0 ≤ a1 + 1 ≤ a(x)h(ϕ) + f(ϕ), |x| < 2R1 −
π

2ε1
. (6)

Since ϕ(x) ∈ C1(Ω), combining (4), (5), (6), we have

−∆p(x)ϕ1 ≤ a(x)h(ϕ) + f(ϕ)

for a.e. x ∈ Ω. Similarly we have

−∆q(x)ϕ2 ≤ b(x)k(ϕ) + g(ϕ2),

for a.e. x ∈ Ω. since ϕ1(x), ϕ2(x) ∈ C1(Ω̄), it is easy to see that (ϕ1, ϕ2) is a

subsolution of (3).

Step 2. We construct a supersolution of (3) Let z1 be a radial solution of

−∆p(x)z1(x) = (a2 + 1)µ, in Ω,

z1 = 0 on ∂Ω .

We denote z1 = z1(r) = z1(|x|), then z1 satisfies

−(rN−1|z′1|p(r)−2z′1)
′ = rN−1(a2 + 1)µ, z1(R) = 0, z′1(0) = 0 .

Then

z′1 = −|r(a2 + 1)µ

N
|

1
p(r)−1 , (7)

and

z1 =

∫ R

r

|r(a2 + 1)µ

N
|

1
p(r)−1dr.

We denote β = β((a2 + 1)µ) = max0≤r≤R z1(r), then

β((a2 + 1)µ) =

∫ R

0

|r(a2 + 1)µ

N
|

1
p(r)−1dr = ((a2 + 1)µ)

1
p(q)−1

∫ R

0

| r
N
|

1
p(r)−1dr,
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where q ∈ [0, 1]. Since
∫ R

0
| r
N
|

1
p(r)−1dr is a constant, then there exists a positive

constant C ≥ 1 such that

1

C
((a2 + 1)µ)

1
p+−1 ≤ β((a2 + 1)µ) = max

0≤r≤R
z1(r) ≤ C((a2 + 1)µ)

1
p−−1 . (8)

We consider

−∆p(x)z1 = (a2 + 1)µ in Ω

−∆q(x)z2 = (b2 + 1)h(β((a2 + 1)µ)) in Ω

z1 = z2 = 0 on ∂Ω .

Then we shall prove that (z1, z2) is a supersolution for (3). For ψ ∈ W 1,q(x)(Ω) with

ψ ≥ 0, it is easy to see that∫
Ω

|∇z2|q(x)−2∇z2 · ∇ψdx =

∫
Ω

(b2 + 1)h(β((a2 + 1)µ))ψdx

≥
∫
Ω

b2h(β((a2 + 1)µ)ψdx+

∫
Ω

h(z1)ψdx.

Similar to (8), we have

max
0≤r≤R

z2(r) ≤ C[(b2 + 1)h(β((a2 + 1)µ))]
1

(q−−1) .

By (H3), for µ large enough we have

h(β((a2 + 1)µ)) ≥ b(C[(b2 + 1)h(β((a2 + 1)µ))]
1

q−−1 ) ≥ b(z2).

Hence ∫
Ω

|∇z2|q(x)−2∇z2 · ∇ψdx ≥
∫
Ω

b(x)k(z2)ψdx+

∫
Ω

h(z1)ψdx, (9)

Also ∫
Ω

|∇z1|p(x)−2∇z1 · ∇φdx =

∫
Ω

(a2 + 1)µφdx.

By (H3), (H4), when µ is sufficiently large, according to (8), we have

(a2 + 1)µ ≥ [
1

C
β((a2 + 1)µ)]p

−−1

≥ b2a(β((a2 + 1)µ)) + f [C[(a2 + 1)
1

(p−−1) (h(β((a2 + 1)µ)))
1

(p−−1) ]

≥ b(x)a(z1) + f(z2),

then ∫
Ω

|∇z1|p(x)−2∇z1 · ∇φdx ≥
∫
Ω

a(x)h(z1)φdx+

∫
Ω

f(z2)φdx. (10)

According to (9) and (10), we can conclude that (z1, z2) is a supersolution of (3).

Let µ be sufficiently large, then from (7) and the definition of (ϕ1, ϕ2), it is easy

to see that ϕ1 ≤ z1 and ϕ2 ≤ z2. This completes the proof. □
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