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An existence result for a class of
(p(x), q(x))-Laplacian system via sub-supersolution
method

Saleh Shakeri

ABSTRACT. This study concerns the existence of positive solution for the following
nonlinear boundary value problem

(x)h(u) + f(v) in Q
—Ay(zyv = b(x)k(v) + g(u) in Q
u=v=0 on df)

—Bp@yu=a

xT

where p(z), g(z) € C*(RY) are radial symmetric functions such that sup |Vp(z)| <
o0,

sup |Vq(z)| < oo and 1 < inf p(z) < supp(z) < 00,1 < inf g(z) < supg(x) < oo,
and where —A, i u = — div |[Vul[P®~2Vu, —A v = — div|Vv|7®) =2V respec-
tively are called p(z)-Laplacian and ¢(x)-Laplacian, 2 = B(0, R) = {z||z| < R}
is a bounded radial symmetric domain, where R > 0 is a sufficiently large con-
stant. We discuss the existence of positive solution via sub-supersolutions without
assuming sign conditions on f(0) and g(0).

1. Introduction

The study of differential equations and variational problems with nonstandard
p(z)-growth conditions has been a new and interesting topic. Many results have
been obtained on this kind of problems; see for example [3, 4, 5, 6, 7, 8, 13]. In
[5, 6] Fan and Zhao give the regularity of weak solutions for differential equations
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with nonstandard p(z)-growth conditions. Zhang [11] investigated the existence of
positive solutions of the system

—Apu = f(v) inQ
—Ap)v = g(u) inQ (1)
u=v=0 on 0

where p(z) € CY(RY) is a function, Q@ C RY is a bounded domain. The operator
—Apyu = —div|VulP®=2Vy) is called p(z)-Laplacian. Especially, if p(z) is a
constant p, System (1) is the well-known p-Laplacian system.
There are many papers on the existence of solutions for p-Laplacian elliptic
systems, for example [1, 3, 4, 5, 6, 7, 8, 9].
In [9] the authors consider the existence of positive weak solutions for the p-
Laplacian problem
—Ayu= f(v) inQ
—A,v=g(u) inQ (2)
u=v=0 ondf.

There the first eigenfunctions is used for constructing the subsolution of p-Laplacian
problems. Under the condition lim, . f(M(g(u))"/®=Y /uP~t = 0, for all M > 0,
the authors show the existence of positive solutions for problem (2). In this paper
we consider the existence of positive solutions of the system

—Apyu = F(z,u,v) in Q
—Ayyv = Gz, u,v) in Q (3)
u=v=0 on Jf2

where p(z), ¢(z) € CY(RY) is a function, F(x,u,v) = [a(z)h(u)+ f(v)], G(x,u,v) =
[b(z)k(v) + g(u)], and Q@ C RY is a bounded domain. The final conclusion can
be done by a standard argument via Perron’s method (a method for solving the
Dirichlet problem for the Laplace equation based on the properties of subharmonic
functions). Perron (see [14]) gave the initial presentation of the method, which was
substantially developed by Wiener and Keldysh in [15]).

To study p(x)-Laplacian problems, we need some theory on the spaces LP(®)(€),
WP@)(Q) and properties of p(x)-Laplacian which we will use later (see [4]). If
Q C R¥ is an open domain, write

Ci(Q)={h:heC(),h(x)>1for x € Q}

ht = sup,cq h(z), h~ = inf,eq h(z), for any h € C(Q), LP@(Q) = {ulu is a
measurable real-valued function, [, |[u["®dz < co}.

Throughout the paper, we will assume that p,q € C;(2) and 1 < inf,cpny p(z) <
sup,epy P() < N, 1 < inf cpn g(x) < supyepny ¢(z) < N. We introduce the norm
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on L1®)(Q)by
[ulpe) = inf{A >0 / |—“(f) Pdr < 1},
Q
and (LP™)(Q), |- |p(z)) becomes a Banach space, we call it generalized Lebesgue space.
The space (LP®) (), |-| »(z)) 18 a separable, reflexive and uniform convex Banach space
(see [4, Theorem 1.10, 1.14]).
The space WP(®)(Q) is defined by W'P®)(Q) = {u € LP@)(Q) : |Vu| € LP®(Q)},
and it is equipped with the norm
lull = Jlpay + V), Vu € WHE(Q).

We denote by WoP™(Q) the closure of C5°(€) in WW@(Q). WLrE)(Q) and
Wy (x)(Q) are separable, reflexive and uniform convex Banach space (see [4, Theo-
rem 2.1]). We define

(L(u),v) :/ VPO 2VuVodz, VYu,v € WHPO(Q),
RN

then L : W@ (Q) — (WP@(Q))* is a continuous, bounded and is a strictly
monotone operator, and it is a homeomorphism [7, Theorem 3.11].

if (u,v) € (WP (Q), W™ (Q)), (u,v) is called a weak solution of (??); if it
satisfies

/|Vu|p(x)_2Vquodx:/)\F(x,u,v)gpdx, Vo € WP (),
Q Q
/ |Vo|1® =2y Vipde = / AG(z,u,v)pdz, Vi € W™ (Q).
Q Q

We make the following assumptions

(H1) p(z), q(x) € CH(RY) is a radial symmetric and sup |Vp(z)| < oo, sup |Vq(z)| <

00

(H2) Q = B(0,R) = {z||z|] < R} is a ball, where R > 0 is a sufficiently large
constant.

(H3) h,k € C'([0,00)) are nonnegative, nondecreasing functions such that

lim (u)

u—+too P~ —1

=0, lim k(v)

u—+too 4 1

=0.

(H4) f,g € C*(]0,00)) are nondecreasing functions, lim, .,y f(u) = +o0,
lim, 400 g(u) = +00, and

p S (g) )

u—~+00 up~ 1

=0, VM >0.

(H5) a,b: [0,4+00) — (0, 00) are continuous functions such that a; = min,cq a(z),by
min,cq b(x) ,as = max,cqa(r) and by = max,cq a(x).
We shall establish the following result.
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2. Main result

Theorem 2.1. If (H1)-(H5) hold, then (3) has a positive solution.

PROOF. We establish this theorem by constructing a positive subsolution (¢y, ¢2)

and supersolution (z1, 29) of (3), such that ¢; < z; and ¢o < 2. That is (¢1, P2)
and (21, z2) satisfy

[ 19620 Vids < [ at@ntoneds + [ féa)ods

Q Q Q

[ 19601290, Vude < [ sak(ovds + [ glonuds,
Q Q Q
/\Vzl|p(x)2Vzl~V<pdx Z/Q(x)h(zl)tpdx—l—/f(zQ)cpdx,
Q Q Q

/ |V 25| 1@ 2V 2, - Vipda > /
Q

Q

b(x)k(ZQ)wdx—i—/g(zl)wd:c,

Q

for all (p,) € (WyP (), W™ (Q)) with @90 > 0. Then (3) has a positive
solution.

Step 1. We construct a subsolution of (3). Denote

inf p(z) —1 R-q
4(sup |Vp(z)| + 1) L=y
_ infg(z) — 1 CR—ay , -
©= e Ve@r ) 2T g 0= mindA0)ar+ £(0), k(0)br + 2(0), 1},

and let

'e—k<’“—R> —1, 2R, <r <R,
— 1 [P (eok) ST
61(r) = X[Msm( (r—2Ry) + I)(ay + 1)]7—Tdr, 2R, — & <r <2R,,
2R, oy PEED =1
—1+ f « (ker) wm=T

ny sineor — 2R1) + B)(or+ DT, 7 < 2R -

\ 287
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where R, is sufficiently large, ¢ is a small positive constant which satisfies Ry <
2Ry — 7, and let

'e_k(’"_R) -1, 2R, <r < R,
— 1 2R (peok) ST
Pa(r) = [M sin(e(r —2Ry) + ) (b1 + 1)]q<’“%—1d7“, 2R — 5 <1 < 2Ry,

9(2Rg)—1

—1 +f2R2 (keok) “atri—T
\ [(2R2) Sm(so(r —2Ry) + 5) (b1 + 1)]Q<’"§*1dr, r < 2Ry —

28’

where R, is sufficiently large, ¢ is a small positive constant which satisfies Ry <

2R2 - 27;7
In the following, we will prove that (¢1, ¢2) is a subsolution of (3). Since
e k=R _ 1 2R, <r <R,
(2R1)-1
iy = ] (ke) o
1(r) = (2R)N-1 . - =
v sin(en(r — 2R1) + §)(ar + D]p0-Tdr, 2Ry — 5= <1 < 2Ry,
O, 0 < r < 2R1 2€ s
and
e kr=R) _ 1, 2Ry <r <R,
ok a(2R1)—1
/ _ _(ke ) o(n)-1
2(T) - (QRQ)N*1 . T 7r
X[ R sin(ea(r — 2Ry) + 5) (b1 + )}W “dr, 2Ry — 55 <1 < 2Ry,
0’ 0 < T < 2R2 262

it is easy to see that ¢1, ¢y > 0 is decreasing and ¢y, o € C([0, R]), ¢1(x) =
é1(]x]) € CHQ) and ¢o(x) = ¢o(|x]) € CH(Q).Let r = |x|. By computation,

~Ayd1 = — div Vo (@) "2 Ve()) = —(rV o/ (n) PO 72/ (r) /¥

Then
(ke 5 =RPO-1 — k(p(r) — 1) + p'(r) Ink
—kp/(r)(r — R) + &2, 2R, <r <R,
—Dp@)P1 = § e (22N (ke*®) (p(2R;) — 1)
x cos(er(r — 2Ry) + §)(ar + 1), 2Ry — 5 <1 < 2Ry,
0, 0<r<2R — g,
If k is sufficiently large, when 2R; < r < R, then
—Apy91 < —klinf p(z) — 1 — sup ]Vp(:c)|(M +R—r)+ N~ 1] < —kay.

k kr



6 SALEH SHAKERI

Since «; is a constant dependent only on p(x), if k is a big enough, such that
—kay < b, and since ¢(z) > 0 and h, f are monotone, this implies

— Dpyd1 < h(0)ar + f(0) < a(x)h(n) + f(¢1), 2R <|z|<R.  (4)
If k is sufficiently large, then
h(e®* —1)>1, feF —1)>1, k(e —-1)>1, g(e™"-1)>1
where k is dependent on h, f, k, g and p, ¢ and independent on R. Since

Ay b1 = 51(2R1)N_1(/€6a1k)(p(2R1) —1)cosler(r — 2R1) + S)(ar + 1)

o 2

<ei(ay + 1)2Nkp+e“1kp+,2R1 — 2l < |z| < 2R;.
€1

Let 1 = 2~ Np=p*e—artkp®  Then

— Dpyé < a1 +1 < a(2)h(ér) + f(é1),2R; — % < |2] < 2R.. (5)
Obviously,
— Apmdr =0 < a; +1 < a(@)h(d) + £(¢), |z] < 2R — 2% (6)

Since ¢(x) € C'(Q), combining (4), (5), (6), we have
—By@ 91 < a(@)h(d) + f(9)
for a.e. x € Q). Similarly we have
—Ag@) P2 < b(2)k(9) + g(¢2),

for a.e. o € Q. since ¢(1),po(x) € CHRQ), it is easy to see that (¢, ds) is a
subsolution of (3).

Step 2. We construct a supersolution of (3) Let z; be a radial solution of
—Apmyz(z) = (a2 + Dy, inQ,
z1=0 ondN.
We denote z; = z1(r) = 21(|z]), then z; satisfies
(NP2 = N (g 4 1), 5 (R) = 0, £(0) = 0.
Then

4=

R
Z1 :/ |T(a2]—\if_ 1)M|”<""7%_1d7"-

We denote 8 = ((ag + 1)p) = maxo<,<r 21(r), then

R R
+1 1 1 1
B((ag + Dp) = / |WIWHW = ((ag + 1)p)7@-1 / I%!P(”—ldr,
0 0

M\W (7)

and
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1
where ¢ € [0,1]. Since fOR |%|7@~Tdr is a constant, then there exists a positive
constant C' > 1 such that

S+ D7 < 8((as + 1) = s 5(r) < Cllas + D)7 (8)

We consider
—Ap@yz1 = (a2 +1)p in Q
—Ag@)z2 = (b2 + D)A(B((az + 1)) in Q
z1=29=0 on 09.

Then we shall prove that (21, z) is a supersolution for (3). For 1y € W@ (Q) with
Y > 0, it is easy to see that

/ |V 25|12V 25 - Vipd = /(62 + Dh(B((ag + 1)p))bdx
Q Q

> /ngh(ﬁ((a2+1),u)¢dx—|—/ﬂh(z1)1/zdx.

Similar to (8), we have

max 2(r) < C[(by + DA(B((az + 1)) & 1.

0<r<R

By (H3), for p large enough we have

B(B((az + 1)p) = b(CI(bz + DA(B((az + D))= 1) = b(z,).
Hence

/ |V 25|12V 25 - Vipda > / b(x)k(20)bdx + / h(z1)¢da, (9)
Q Q

9]
Also

/ V2, [P@2V 2, - Vdr = /(az + 1) ppde.
0 0

By (H3), (H4), when p is sufficiently large, according to (8), we have

(0 + 1)1 2 [6((+ Dl

2a(B((az + D)) + FIC[(az + 1) (h(B((az + 1)) & ]

b
b(z)a(z1) + f(22),

(A\VARAVS

then
/lel\p(x)2Vz1~V<pdx2/a(:v)h(zl)godx—i-/f(zg)(pdx. (10)
0 Q Q

According to (9) and (10), we can conclude that (21, 22) is a supersolution of (3).
Let p be sufficiently large, then from (7) and the definition of (¢4, ¢2), it is easy
to see that ¢ < 21 and ¢9 < z5. This completes the proof. OJ
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