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Some approximations for an equation in modular

spaces

Mehdi Salehi Barough

Abstract. In this paper, we introduce and obtain the general solution of a new

mixed type quadratic-cubic functional equation. We investigate the stability of

such functional equations in the modular space Xρ by applying ∆2-condition and

the Fatou property (in some results) in the modular function ρ.

1. Introduction

We say that an equation is stable in some class of functions if any function from

that class, satisfying the equation approximately (in some sense), is near (in some

way) to an exact solution of the equation. In 1940, Ulam [40] asked the question

concerning the stability of group homomorphisms. The famous Ulam stability prob-

lem was partially solved by Hyers [15] for the linear functional equation of Banach

spaces. Hyers’ theorem was generalized by Aoki [1] for additive mappings and by

Th. M. Rassias [37] for linear mappings by considering an unbounded Cauchy dif-

ference. A generalization of the Rassias theorem was obtained by Găvruţa [14] by

replacing the unbounded Cauchy difference by a general control function in the spirit

of Rassias approach.

The stability problem for quadratic functional equation

Q(x+ y) +Q(x− y) = 2Q(x) + 2Q(y) (1)

has been studied in normed spaces by Skof [39] with constant bound. Thereafter,

Czerwik [13] proved the Hyers-Ulam stability of the quadratic functional equation

with nonconstant bound; some different version of quadratic, quadratic-reciprocal

functional equations and their stabilities with applications can be found in [4], [7]

and [16].
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The cubic function f(x) = ax3 satisfies the functional equation

f(2x+ y) + f(2x− y) = 2f(x+ y) + 2f(x− y) + 12f(x). (2)

Hence, the equation (2) is called a cubic functional equation and every solution of

equation (2) is said to be a cubic function. The stability result of equation (2) was

obtained by Jun and Kim [21] for the first time. After that, they [22] introduced

the following cubic functional equation

f(x+ 2y) + f(x− 2y) + 6f(x) = 4f(x+ y) + 4f(x− y)

and they established the general solution and the Hyers-Ulam stability problem for

it; see [3],[6], [8] and [20] for some results of various cubic functional equations

and also their reciprocal with the generalized Hyers-Ulam stability. More result of

miscellaneous functional equations can be found in [2], [5], [9], [10], [17], [35], [36],

and references therein.

In [12], Chang and Jung introduced the following mixed type quadratic and

cubic functional equation

6f(x+ y)− 6f(x− y) + 4f(3y) = 3f(x+ 2y)− 3f(x− 2y) + 9f(2y). (3)

They established the general solution of functional equation (3) and investigated

the Hyers-Ulam-Rassias stability of this equation; for a different form of mixed type

quadratic-cubic functional equation, we refer to [23].

Nakano [31] initiated the study of the modular on linear spaces and the rel-

evant theory of modular linear spaces as generalizations of metric spaces. Next,

Luxemburg [26], Mazur, Musielak and Orlicz [28, 29, 30] thoroughly developed it

extensively. Since then, the theory of modulars and modular spaces is widely ap-

plied in the study of interpolation theory [27, 25] and various Orlicz spaces [32]. A

modular yields less properties than a norm does, but it makes a more sense in many

special situations. When we work in a modular space, it is frequently assumed that

the modular satisfies extra additional properties like some relaxed continuity or some

∆2-condition. As for the mentioned condition, Khamsi [18] studied the stability of

quasicontraction mappings in modular spaces without ∆2-condition by using the

fixed point theorem. The stability results of additive functional equations in mod-

ular spaces equipped with the Fatou property and ∆2-condition were investigated

by Sadeghi [38] who used Khamsi’s fixed point theorem. In addition, the stability

of quadratic functional equations in modular spaces satisfying the Fatou property

without using the ∆2-condition was investigated in [41]. Park et al., investigated

the stability of additive and Jensen-additive functional equations without using the

∆2-condition by a fixed point method [33]. An alternative generalized Hyers-Ulam

stability theorem of a modified quadratic functional equation in a modular spaces

using ∆3-condition without the Fatou property on a modular function is in [19].

Furthermore, a refined stability result and alternative stability results for additive
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and quadratic functional equations using direct method in modular spaces are given

in [24].

In this paper, we consider the mixed type quadratic-cubic functional which is

somewhat different from (3) as follows:

f(x+ 2y)− f(x− 2y) = 2[f(x+ y)− f(x− y)] + 3f(2y)− 12f(y) (4)

It is easily verified that the function f(x) = ax2 + bx3 is a solution of equation (4).

The main purpose of the present paper is to solve and to prove the Hyers-Ulam

stability problem equation (4) in the modular space Xρ by applying ∆2-condition

and the Fatou property (in some results) in the modular function ρ.

2. Preliminary notations

In this section, we recall some basic facts concerning modular spaces and some

preliminary results.

Definition 2.1. Let X be a linear space over a field K (R or C). A generalized

function ρ : X −→ [0,∞] is called a modular if it satisfies the following three

conditions for elements α, β ∈ K, x, y ∈ X;

(i) ρ(x) = 0 if and only if x = 0;

(ii) ρ(αx) = ρ(x) for all scalar α with |α| = 1;

(iii) ρ(αx+ βy) ≤ ρ(x) + ρ(y) for all scalar α, β ≥ 0 with α + β = 1.

If the condition (iii) is replaced by ρ(αx+βy) ≤ αtρ(x)+βtρ(y) when αt+βt = 1

and α, β ≥ 0 with an t ∈ (0, 1], then ρ is called an t-convex modular. 1-convex

modulars are called convex modulars. For a modular ρ, there corresponds a linear

subspace Xρ of X, given by Xρ := {x ∈ X : ρ(λx) → 0 asλ → 0}. In this case Xρ

is called a modular space.

Let ρ be a convex modular. Then, the modular space Xρ can be equipped with

a norm called the Luxemburg norm, defined by ∥x∥ρ =inf{λ > 0 : ρ
(
x
λ

)
≤ 1}.

Here, we remind the following notes which are taken from [19].

(1) If ρ is a modular on X, then ρ(tx) is an increasing function in t ≥ 0 for

each fixed x ∈ X, that is, ρ(ax) ≤ ρ(bx) whenever 0 ≤ a < b;

(2) If ρ is a convex modular on X and |α| ≤ 1, then ρ(ax) ≤ |α|ρ(x) for all

x ∈ X. In particular, if αj ≥ 0 (j = 1, 2, . . . , n) with 0 <
∑n

j=1 αj ≤ 1, then

ρ
(∑n

j=1 αjxj

)
≤

∑n
j=1 αjρ(xj) for all xj ∈ X.

Definition 2.2. Let Xρ be a modular space and let {xn} be a sequence in Xρ.

Then

(i) {xn} is ρ-convergent to a point x∗ ∈ Xρ and write xn
ρ→ x∗ if ρ(xn−x∗) → 0

as n→ ∞);
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(ii) {xn} is ρ-Cauchy sequence if for any ϵ > 0 one has ρ(xn − xm) < ϵ for

sufficiently large m,n ∈ N;
(iii) A subset Y ⊆ Xρ is called ρ-complete if any ρ-Cauchy sequence is ρ-

convergent to a point in Y .

Example 2.3. [34] Let ψ : [0,∞) −→ R be a function defined by ψ(0) = 0 and

ψ(t) > 0 for all t > 0, and limt→∞ ψ(t) = ∞. If moreover ψ is convex, continuous and

nondecreasing, then ψ is called an Orlicz function. For a measure space (X,
∑
, µ),

suppose that L0(µ) is the set of all measurable functions on X. For each f ∈ L0(µ),

define ρψ(f) =
∫
X
ψ(|f |)dµ. Then, ρψ is a modular and the corresponding modular

space is called an Orlicz space and denoted by

Lψ = {f ∈ L0(µ)| ρψ(λf) → 0 asλ→ 0}.

One can check that Lψ is ρψ-complete.

A modular function ρ is said to satisfy the ∆s-condition if there exists κ > 0 such

that ρ(sx) ≤ κρ(x) for all x ∈ Xρ. Throughout this paper, we say that the constant

κ is a ∆s-constant related to ∆s-condition. Suppose that ρ is convex and satisfies ∆s-

condition with ∆s-constant κ. If κ < s, then ρ(x) ≤ κρ
(
x
s

)
≤ κ

s
ρ(x), which implies

ρ = 0. Hence, we must have the ∆s-constant κ ≥ s if ρ is convex modular. It is said

that the modular ρ has the Fatou property if and only if ρ(x) ≤ lim infn→∞ ρ(xn)

whenever the sequence {xn} is ρ-convergent to x in the modular space Xρ.

3. Stability of (4) in modular spaces

In this section, we prove the generalized Hyers-Ulam-Rassias stability of the

mixed type quadratic-cubic functional equation (4). From now on, we assume that

V is a real vector space andXρ is a complete modular space satisfies the ∆2-condition

and has the Fatou property unless otherwise stated explicitly.

Before proceeding the proof of our main results in this section, we shall bring

the following lemma.

Lemma 3.1. Let X and Y are real vector spaces. Suppose that f : X −→ Y

satisfies (4) for all x, y ∈ X.

(i) If f is even, then f is quadratic;

(ii) If f is odd, then f is cubic.

Proof. (i) Putting x = y = 0 in (4), we have f(0) = 0. Letting x = 0 in (4),

we get by the evenness of f that f(2y) = 4f(y) for all y ∈ X. The last equality

converts (4) to

f(x+ 2y)− f(x− 2y) = 2[f(x+ y)− f(x− y)] (5)

for all x, y ∈ X. It is seen that (5) is the same relation (2.2) from [12]. Repeating

the proof of Lemma 2.1 of [12], one can find (1) for f .
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(ii) Putting x = 0 in (4) and using the oddness of f , we have f(2y) = 8f(y) for

all y ∈ X. Applying the last equality in (4), we arrive at

f(x+ 2y)− f(x− 2y) = 2[f(x+ y)− f(x− y)] + 12f(y) (6)

for all x, y ∈ X. Replacing (x, y) by (y, x) in (6), we obtain

f(2x+ y) + f(2x+ y) = 2[f(x+ y) + f(x− y)] + 12f(x) (7)

for all x, y ∈ X. This completes the proof. □

Similar to Theorem 2.3 of [12], we have the next result. Since the proof is the

same, is omitted.

Theorem 3.2. Let X and Y be real vector spaces. Then, a mapping f : X −→
Y satisfies functional equation (4) for all x, y ∈ X if and only if there exists a

unique symmetric biadditive mapping Q : X × X −→ Y and a unique mapping

C : X ×X ×X −→ Y such that f(x) = Q(x, x) + C(x, x, x) for all x ∈ X, and C is

symmetric for fixed one variable and is additive for fixed two variables.

Here and subsequently, given f : X −→ Y , for simplicity, we define the difference

operator Λf : X ×X −→ Y by

Λf(x, y) : = f(x+ 2y)− f(x− 2y)− 2[f(x+ y)− f(x− y)]− 3f(2y) + 12f(y)

for all x, y ∈ X.

In the upcoming theorem, we prove the stability of the functional equation (4)

as a quadratic functional equation (the even case of (4)) in the modular spaces.

Theorem 3.3. Let s ∈ {1,−1}. Let ϕ : V × V −→ [0,∞) be a function such

that
∞∑

j=
|s−1|

2

κ2|s−1|j

4j
ϕ(2sjx, 2sjy) <∞ (8)

for all x, y ∈ V . Suppose that f : V −→ Xρ is an even mapping satisfying f(0) = 0

(when s = 1) and the inequality

ρ(Λf(x, y)) ≤ ϕ(x, y) (9)

for all x, y ∈ V . Then, there exists a unique quadratic mapping Q : V −→ Xρ such

that

ρ(f(x)−Q(x)) ≤ 1

12

∞∑
j=

|s−1|
2

κ2|s−1|jϕ(0, 2jsx)

4j
(10)

for all x ∈ V .
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Proof. We firstly consider s = 1. Note that in this case f(0) = 0 is assumed.

Replacing (x, y) by (0, x) in (9), we get

ρ(−3f(2x) + 12f(x)) ≤ ϕ(0, x) (11)

for all x ∈ V , and so

ρ(f(2x)− 4f(x)) ≤ 1

3
ϕ(0, x) (12)

for all x ∈ V . The inequality (12) implies that

ρ

(
f(x)− f(2x)

4

)
≤ 1

12
ϕ(0, x)

for all x ∈ V . Once more, by induction on k, one can prove the following functional

inequality

ρ

(
f(x)− f(2kx)

4k

)
≤ 1

12

k−1∑
j=0

ϕ(0, 2jx)

4j
(13)

for all x ∈ V . Now, Interchanging x by 2lx in (13), we have

ρ

(
f(2lx)

4l
− f(2k+lx)

4k+l

)
≤ 1

12

k+l−1∑
j=l

ϕ(0, 2jx)

4j

for all x ∈ V . Since the right-hand side of the above inequality tends to zero

as l goes to infinity, the sequence {f(2
kx)

4k
} is a ρ-Cauchy sequence in Xρ and so

the mentioned sequence is ρ-convergent on Xρ. Thus, we may define the mapping

Q : V −→ Xρ via Q(x) = ρ − limk→∞
f(2kx)

4k
for all x ∈ V . In other words,

limk→∞ ρ
(
f(2kx)

4k
−Q(x)

)
= 0. Replacing (x, y) by (2kx, 2ky) in (9), and dividing

the resulting inequality by 4k, we get

ρ

(
1

4k
Λf(2kx, 2ky)

)
≤ 1

4k
ρ
(
Λf(2kx, 2ky)

)
≤ 1

4k
ϕ(2kx, 2ky)

for all x, y ∈ V . Similar to the proof of [19, Theorem 4], one can show that

ΛQ(x, y) = 0 for all x, y ∈ V . This means that Q is a quadratic mapping. Now, it

follows from the Fatou property of modular ρ that

ρ (f(x)−Q(x)) ≤ lim inf
k→∞

ρ

(
f(x)− f(2kx)

4k

)
≤ 1

12

k−1∑
j=0

ϕ(0, 2jx)

4j

for all x ∈ V , which shows that relation (10) holds. For the uniqueness of Q, we

assume that there exists another quadratic mapping Q0 : V −→ Xρ such that

ρ(f(x)−Q0(x)) ≤
1

12

∞∑
j=0

ϕ(0, 2jx)

4j
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for all x ∈ V such that Q0(x∗) ̸= Q(x∗) for some x∗ ∈ V . In other words, there

is a positive constant δ > 0 such that ρ(Q0(x∗) − Q(x∗)) > δ. On the other hand,

that there is a positive integer p0 ∈ N such that 1
12

∑∞
j=p0

ϕ(0,2jx)
4j

< δ. Since Q and

Q0 are quadratic mappings, we have Q0(2
p0x) = 4p0Q0(x) and Q(2p0x) = 4p0Q(x).

Hence,

δ < ρ(Q0(x)−Q(x)) ≤ 1

4p0
ρ (Q0(2

p0x)− f(2p0x)) +
1

4p0
ρ (f(2p0x)−Q(2p0x))

≤ 1

12

∞∑
j=0

ϕ(0, 2j+p0x)

4j+p0
=

1

12

∞∑
j=p0

ϕ(0, 2jx)

4j
< δ

which is a contradiction. Now, assume that s = −1. Since κ ≥ 2, (8) implies that

f(0) = 0. It follows (12) that

ρ
(
f(x)− 4f

(x
2

))
≤ 1

3
ϕ
(
0,
x

2

)
(14)

for all x ∈ V . By the convexity of the modular ρ, ∆2-condition and (14), we have

ρ
(
f(x)− 42f

( x
22

))
≤ 1

4
ρ
(
4f(x)− 42f

(x
2

))
+

1

4
ρ
(
42f

(x
2

)
− 43f

( x
22

))
≤ 1

3

[
κ2

4
ϕ
(
0,
x

2

)
+
κ4

4
ϕ
(
0,
x

22

)]
for all x ∈ V . It is routine to show by induction on k > 1 that

ρ
(
f(x)− 4kf

( x
2k

))
≤ 1

3

[
k−1∑
j=1

κ2(2j−1)

4j
ϕ
(
0,
x

2j

)
+
κ4(k−1)

4k−1
ϕ
(
0,
x

2k

)]
(15)

for all x ∈ V . Replacing x by x
2l

in (15), we get

ρ
(
4lf

( x
2l

)
− 4k+lf

( x

2k+l

))
≤ κ2lρ

(
f
( x
2l

)
− 4kf

( x

2k+l

))
≤ 1

3

[
κ2l

k−1∑
j=1

κ2(2j−1)

4j
ϕ
(
0,

x

2j+l

)
+ κ2l

κ4(k−1)

4k−1
ϕ
(
0,

x

2k+l

)]

≤ 1

3

[
4l

κ2l

k+l−1∑
j=1+1

κ2(2j−1)

4j
ϕ
(
0,
x

2j

)
+

4l

κ2l
κ4(k+l−1)

4k+l−1
ϕ
(
0,

x

2k+l

)]
(16)

for all x ∈ V . It follows from (8) and (16) that the sequence {4kf
(
x
2k

)
} is a ρ-

Cauchy sequence in Xρ. Hence, there exists the mapping Q : V −→ Xρ such

that Q(x) = ρ − limk→∞ 4kf
(
x
2k

)
. This means that the mentioned sequence is a

ρ-convergent to Q(x). Using the ∆2-condition without applying the Fatou property,
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we obtain

ρ (f(x)−Q(x)) ≤ 1

4
ρ
(
4f(x)− 4k+1f

( x
2k

))
+

1

4
ρ
(
4k+1f

( x
2k

)
− 4Q(x)

)
≤ κ2

4
ρ
(
f(x)− 4kf

( x
2k

))
+
κ2

4
ρ
(
4kf

( x
2k

)
−Q(x)

)
≤ 1

3

[
κ2

4

k−1∑
j=1

κ2(2j−1)

4j
ϕ
(
0,
x

2j

)
+
κ2

4

κ4(k−1)

4k−1
ϕ
(
0,
x

2k

)]

+
κ2

12
ρ
(
4kf

( x
2k

)
−Q(x)

)
for all x ∈ V . Letting k → ∞, we see that (10) holds. The rest of the proof is

similar to the case s = 1. This completes the proof. □

The following corollaries are the direct consequences of Theorem 3.3 concerning

the stability of (4).

Corollary 3.4. Given θ > 0 and r > 0 such that r ̸= 2, log
κ4

4
2 . Let V be a

normed space and Xρ be a ρ-complete convex modular space. If f : V −→ Xρ is an

even mapping satisfying

ρ(Λf(x, y)) ≤ θ(∥x∥r + ∥y∥r)

for all x, y ∈ V , then there exists a unique quadratic mapping Q : V −→ Xρ such

that

ρ(f(x)−Q(x)) ≤


θ

3(4−2r)
∥x∥r r ∈ (0, 2)

κ4θ
12(2r+2−κ4)∥x∥

r r ∈ (log
κ4

4
2 ,∞)

for all x ∈ V .

Proof. We firstly note that f(0) = 0. Putting ϕ(x, y) = θ(∥x∥r + ∥y∥r) in

Theorem 3.3, one can obtain the first and second inequalities for s = 1 and s = −1,

respectively. □

Let A be a nonempty set, (X, d) a metric space, ψ ∈ RAn

+ , and F1,F2 operators

mapping a nonempty set D ⊂ XA into XAn
. We say that operator equation

F1φ(a1, . . . , an) = F2φ(a1, . . . , an) (17)

is ψ-hyperstable provided every φ0 ∈ D satisfying inequality

d(F1φ0(a1, . . . , an),F2φ0(a1, . . . , an)) ≤ ψ(a1, . . . , an), a1, . . . , an ∈ A,

fulfils (17); this definition is introduced in [11]. In other words, a functional equation

F is hyperstable if any mapping f satisfying the equation F approximately is a true

solution of F .



SOME APPROXIMATIONS FOR AN EQUATION IN MODULAR SPACES 59

Corollary 3.5. Given θ, p, q > 0 and r = p+ q such that r ̸= 2, log
κ4

4
2 . Let V be

a normed space and Xρ be a ρ-complete convex modular space. If f : V −→ Xρ is

an even mapping satisfying

ρ(Λm,nf(x, y)) ≤ θ∥x∥p∥y∥q

for all x, y ∈ V , then f is quadratic.

Remark 3.6. We should remember that

(i) in the case s = 1 of Theorem 3.3, we have used the Fatou property while

the ∆2-condition is not applied and vice versa for the case s = −1;

(ii) in Corollary 3.4 and Corollary 3.5, if ∆2-constant is κ = 2, then log
κ4

4
2 = 2.

Thus, the second conditions convert to r ∈ (2,∞).

We have the next result which is analogous to Theorem 3.3 for functional equa-

tion (4) in the odd case.

Theorem 3.7. Let s ∈ {1,−1}. Let ϕ : V × V −→ [0,∞) be a function such

that
∞∑

j=
|s−1|

2

κ3|s−1|j

8j
ϕ(2sjx, 2sjy) <∞ (18)

for all x, y ∈ V . Suppose that f : V −→ Xρ is an odd mapping satisfying the

inequality

ρ(Λf(x, y)) ≤ ϕ(x, y) (19)

for all x, y ∈ V . Then, there exists a unique cubic mapping C : V −→ Xρ such that

ρ(f(x)− C(x)) ≤ 1

8

∞∑
j=

|s−1|
2

κ3|s−1|jϕ(0, 2jsx)

8j
(20)

for all x ∈ V .

Proof. Replacing (x, y) by (0, x) in (19) and using the oddness property, we

have

ρ(f(2x)− 8f(x)) ≤ ϕ(0, x) (21)

for all x ∈ V . For the rest of the proof, one can repeat the same process in the proof

of Theorem 3.3 after relation (12) to obtain the desired result. □

The upcoming results are some consequences of Theorem 3.7 concerning the

stability of (4) when f is an odd mapping. Since the proofs are similar to the proofs

of Corollaries 3.4 and 3.5, we omit them.



60 MEHDI SALEHI BAROUGH

Corollary 3.8. Given θ > 0 and r ∈ R such that r ̸= 3, log
κ6

8
2 . Let V be a

normed space and Xρ be a ρ-complete convex modular space. If f : V −→ Xρ is an

odd mapping satisfying

ρ(Λf(x, y)) ≤ θ(∥x∥r + ∥y∥r)

for all x, y ∈ V , then there exists a unique cubic mapping C : V −→ Xρ such that

ρ(f(x)− C(x)) ≤


θ

8−2r
∥x∥r r ∈ (0, 3)

κ6θ
8(2r+3−κ6)∥x∥

r r ∈ (log
κ6

8
2 ,∞)

for all x ∈ V .

Corollary 3.9. Given θ, p, q > 0 and r = p+ q such that r ̸= 3, log
κ6

8
2 . Let V be

a normed space and Xρ be a ρ-complete convex modular space. If f : V −→ Xρ is

an odd mapping satisfying

ρ(Λf(x, y)) ≤ θ∥x∥p∥y∥q

for all x, y ∈ V , then f is cubic.

Here, by using Theorems 3.3 and 3.7, we prove the generalized Hyers-Ulam-

Rassias stability of the mixed type quadratic and cubic functional equation (4)

when f is an arbitrary mapping.

Theorem 3.10. Let s ∈ {1,−1} and t ∈ {2, 3}. Let ϕ : V × V −→ [0,∞) be a

function such that
∞∑

j=
|s−1|

2

κt|s−1|j

2tj
ϕ(2sjx, 2sjy) <∞,

for all x, y ∈ V . Suppose that f : V −→ Xρ is a mapping satisfying f(0) = 0 (when

s = 1) and the inequality

ρ(Λf(x, y)) ≤ ϕ(x, y)

for all x, y ∈ V . Then, there exists a unique quadratic mapping Q : V −→ Xρ and

a unique cubic mapping C : V −→ Xρ such that

ρ(f(x)−Q(x)− C(x))

≤ 1

24

∞∑
j=

|s−1|
2

κ2|s−1|jΦ(0, 2jsx)

4j
+

1

16

∞∑
j=

|s−1|
2

κ3|s−1|jΦ(0, 2jsx)

8j
(22)

for all x ∈ V , where

Φ(x, y) =
1

2
[ϕ(x, y) + ϕ(−x,−y)]. (23)
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Proof. To find our purpose, we decompose f into the even part and odd part

by setting

fo(x) =
1

2
(f(x)− f(−x)), fe(x) =

1

2
(f(x) + f(−x)), (x ∈ X).

We have ρ(Λfo(x, y)) ≤ Φ(x, y) and ρ(Λfe(x, y)) ≤ Φ(x, y) for all x, y ∈ V , where

Φ(x, y) is given in (23). It follows from Theorem 3.3 that there exists a unique

quadratic mapping Q0 : V −→ Xρ such that

ρ(fe(x)−Q0(x)) ≤
1

12

∞∑
j=

|s−1|
2

κ2|s−1|jΦ̃(0, 2jsx)

4j
(24)

for all x ∈ V . Moreover, Theorem 3.7 implies that there exists a unique cubic

mapping C0 : X −→ Y such that

ρ(fo(x)− C0(x)) ≤
1

8

∞∑
j=

|s−1|
2

κ3|s−1|jΦ̃(0, 2jsx)

8j
(25)

for all x ∈ V . Now, by (24) and (25) we can obtain the inequality (22) where

Q(x) = 1
2
Q0(x) and C(x) = 1

2
C0(x). □

The following corollaries are the direct consequences of Theorem 3.3 concerning

the stability of (4).

Corollary 3.11. Given θ > 0 and r > 0 such that r ̸= t, log
κ2t

2t

2 when t ∈ {2, 3}.
Let V be a normed space and Xρ be a ρ-complete convex modular space. If f : V −→
Xρ is a mapping satisfying

ρ(Λf(x, y)) ≤ θ(∥x∥r + ∥y∥r)

for all x, y ∈ V , then there exists a unique quadratic mapping Q : V −→ Xρ and a

unique cubic mapping C : V −→ Xρ such that

ρ(f(x)−Q(x)− C(x))

≤



[
2

3(4−2r)
+ 1

2(8−2r)
)
]
θκ∥x∥r 0 < r < 2

[
κ4

24(2r+2−κ4) +
1

2(8−2r)

]
θκ∥x∥r log

κ4

4
2 < r < 3

[
κ4

24(2r+2−κ4) +
κ6

16(2r+3−κ6)

]
θκ∥x∥r r > log

κ6

8
2

for all x ∈ V .



62 MEHDI SALEHI BAROUGH

Corollary 3.12. Given θ, p, q > 0 and r = p + q such that r ̸= t, log
κ2t

2t

2 when

t ∈ {2, 3}. Let V be a normed space and Xρ be a ρ-complete convex modular space.

If f : V −→ Xρ be a mapping satisfying

ρ(Λf(x, y)) ≤ θ∥x∥p∥y∥q

for all x, y ∈ V , then f is qudratic-cubic.
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