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On various types of compatible Jungck–Rhoades

pairs of mappings in C∗-algebra valued metric

spaces

Parveen Kumar, Ljiljana Paunović, and Nicola Fabiano∗

Abstract. In this paper, among other things, we have established four
different types of compatible mappings that work in the context of
C∗-algebra valued metric spaces. The obtained types of mappings
generalize from previously known ones within ordinary metric spaces.
We have shown by examples that these types of mappings are really
different. They can be used to consider new fixed point results which
were done in the paper for the case of common fixed points of some
mappings. The results in this paper generalize, extend, unify, enrich
and complement many known results in the existing literature.

1. Introduction and preliminaries

Fixed point theory is the most interesting tool for various branches of non linear

analysis. There are three main approaches in this theory: the metric, the topolog-

ical and the order-theoretic approach, where representative examples are Banach’s,

Brouwer’s and Tarski’s theorems, respectively.

Fixed-point theory and its applications, such as numerical fixed-point theory and

graphical fixed-point theory, will be truly groundbreaking in the coming years. At

the intuitive level, fixed point theory can be used as an authoritative simulation

method in different fields of science and/or technical sciences to derive solutions

and/or experimental findings. From a more general point of view, fixed point theory

can also be seen as an attempt to relate biological sciences/computational sciences

to research into various abstract spaces on convergence analysis and compactness.

Computer programming scientists research logic programming semantics using met-

ric spaces (and/or their generalizations) because it is easy to formulate and can be
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defined and used to prove results. The current success of the establishment of various

standardized metric spaces (and/or its associated results) has given rise to consider-

able interest and analysis in fixed-point metric theory (see e.g., [1],[2],[16],[17],[27]).

On the other hand, the term of C∗-algebra was introduced by Segal [28] in 1947

to describe norm-closed sub algebras of B(H), namely, the space of bounded oper-

ators on some Hilbert space H, ′C ′ stands for ‘closed’. In [28], Segal considered a

C∗-algebra as a “uniformly closed, self-adjoint algebra of bounded operators on a

Hilbert space”. A real or a complex linear space A is said to be an algebra if vector

multiplication is given for every pair of elements of A verifying two conditions so

that A is a ring with respect to vector addition and vector multiplication, and for

every scalar α and all Ω, τ ∈ A, we have α(Ωτ) = (αΩ)τ = Ω(ατ). A norm ∥.∥ on A
is called sub-multiplicative if ∥µς∥ ≤ ∥µ∥∥ς∥ for all µ, ς ∈ A. Here, (A, ∥.∥) is said
to be a normed algebra. A complete normed algebra is said to be a Banach algebra.

A ∗-algebra is a complex algebra with a linear involution ∗ so that τ ∗∗ = τ

and (τz)∗ = τ ∗z∗ , for all τ, z ∈ A. If a ∗-algebra is endowed with a complete

sub-multiplicative norm verifying ∥τ ∗∥ = ∥τ∥ for each τ ∈ A, then the ∗-algebra is

called a Banach ∗-algebra. A C∗-algebra is a Banach ∗-algebra so that ∥τ ∗τ∥ = ∥τ∥2
for each τ ∈ A. If a normed algebra A admits a unit 1A (that is, µ1A = 1Aµ = µ

for each µ ∈ A and ∥1A∥ = 1), then A is an unital normed algebra. A complete

unital normed algebra A is said to be an unital Banach algebra. A positive element

of A is an element σ ∈ A so that µ∗ = µ and its spectrum σ(µ) ⊂ R+, where

σ(µ) = {λ ∈ R : λ1A − µ is non-invertible}. The set of all positive elements is

denoted by A+. Such elements allow us to define a partial ordering ’⪰’ on the

elements of A. That is,

ς ⪰ µ if and only if ς − µ ∈ A+.

If µ ∈ A is positive, we write µ ⪰ 0A, where 0A is the zero element of A. Each

positive element µ of a C∗-algebra A has a unique positive square root. From now

on, by A we mean an unital C∗-algebra with identity element 1A. The sum of two

positive elements in a C∗-algebra is a positive element. If µ is an arbitrary element

of a C∗-algebra A, then µ∗µ is positive. Let A be a C∗-algebra and if µ, ς ∈ A+ such

that µ ⪯ ς, then for any Ω ∈ A, both Ω∗µΩ and Ω∗ςΩ are positive and elements of

A+ and Ω∗µΩ ⪯ Ω∗ςΩ. Further, A+ = {µ ∈ A : µ ⪰ 0A} and (µ∗µ)
1
2 = |µ|.

A C∗-algebra A verifies the following algebraic operations:

1: addition, which is commutative and associative;

2: multiplication, which is associative;

3: multiplication by complex scalars;

4: an involution µ ↣ µ∗ (that is, (µ∗)∗ = µ, for each µ in A).

The two above multiplications distribute over addition. Also, A endowed with the

following norm is a Banach algebra:
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∥β∥ = |β|∥µ∥,
∥µ+ ς∥ ≤ ∥µ∥+ ∥ς∥,

∥µς∥ ≤ ∥µ∥∥ς∥ for all µς ∈ A and β ∈ C.

A is complete (d(µ, ς) = ∥µ− ς∥). Finally, for each µ in A, we have ∥µ∗µ∥ = ∥µ∥2.
A has an algebraic structure and a topological structure coming from a norm. The

condition that A be a Banach algebra expresses a compatibility between these struc-

tures. For more synthesis on the work done in C∗-algebra valued metric spaces with

some noteworthy remarks, we refer to [5, 18, 19, 20, 21, 23, 24, 25, 26].

Throughout the paper, A is an unital C∗-algebra with a unit 1A, R is the set of real

numbers and R+ is the set of non-negative real numbers. Mn(R) is n × n matrix

with real entries.

Lemma 1.1. [22] Let A be an unital C∗-algebra with a unit 1A.

(1) For any Ω ∈ A+, we have Ω ⪯ 1A if and only if ∥Ω∥ ≤ 1.

(2) If µ ∈ A+ with ∥µ∥ < 1
2
, then 1A − µ is invertible and ∥µ(1A − µ)−1∥ < 1.

(3) If µ, ς ∈ A with µ, ς ⪰ 0A and µς = ςµ, then µ, ς ⪰ 0A.

(4) Denote by A′, the set {µ ∈ A : µς = ςµ, ∀ς ∈ A}. Let µ ∈ A′. If ς, υ ∈ A
with ς ⪰ υ ⪰ 0A, and 1A − µ ∈ A′ is an invertible operator, then

(1A − µ)−1ς ⪰ (1A − µ)−1υ.

In 2014, Ma and Jiang [21] introduced the concept of C∗-algebra-valued metric

spaces as a new concept more general than metric spaces, by replacing the set of

real numbers with C∗-algebras.

Definition 1.1. [21] Let X be a non empty set. If d : X ×X → A is such that

(1.1)0A ⪯ d(Ω, τ);

(1.2)d(Ω, τ) = 0A if and only if Ω = τ ;

(1.3)d(Ω, τ) = d(τ,Ω);

(1.4)d(Ω, τ) ⪯ d(Ω, ω) + d(ω, τ),

for all Ω, τ, ω ∈ X, then d is called a C∗-algebra-valued metric on X, and (X,A, d)

is called a C∗-algebra-valued metric space.

Definition 1.2. [21] Let (X,A, d) be a C∗-algebra-valued metric space. The

mapping T : X → X is called C∗-algebra-valued contraction if there is P ∈ A with

∥P∥ < 1 so that d(TΩ, T τ) ⪯ P ∗d(Ω, τ)P for all Ω, τ ∈ X.

Example 1.3. [21] Let X = R and A = M2(R). Take d(Ω, τ) = diag (|Ω −
τ |, α|Ω − τ |) where Ω, τ ∈ R and α ⩾ 0 is a constant. Here, (X,M2(R), d) is a

complete C∗-algebra-valued metric space (follows from the completeness of R). For
more details, one can refer to [21, 22, 23, 25, 26].
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2. Properties of compatible maps and its variants

In mathematics and theoretical physics in general, community is one of the basic

concepts. Because it is important to know when and whether an operation with

vectors, tensors, matrices and operators in general is commutative: A ∗B = B ∗A.
Quantity is actually based on that notion. Thus, even with ordinary mappings, it

is important to know whether they switch or not. The functions sin and cos do not

commute because it is not true that sin(cos x) = cos(sin x). Community is therefore

a strong property. The first step in its corruption is consent. In the last century,

G. Jungck [6]–[8],[9]–[12],[13]–[15],[17], introduced this more general term than

community. This was done over strings. It is easy to check that two community

mappings are compatible but that the reverse is not true. There is an even more

general term, Jungck’s weak consent. Which also has application in the theory of

coincidence and point of coincidence.

We present variant notions of compatibility and its variants in the class of C∗-

algebra-valued metric spaces.

Definition 2.1. Let f and g be two self-mappings on a C∗-algebra-valued metric

space (X,A, d). Let {xn} be a sequence in X so that limn→+∞ fxn = limn→+∞ gxn =

t for some t ∈ X. Such f and g are said to be

(1) compatible if limn→+∞ d(fgxn, gfxn) = 0A.

(2) compatible of type (A) if

lim
n→+∞

d(fgxn, ggxn) = 0A and lim
n→+∞

d(gfxn, ffxn) = 1A.

(3) compatible of type (B) if

lim
n→+∞

d(fgxn, ggxn) ⪯
[limn→+∞ d(fgxn, ft) + limn→+∞ d(ft, ffxn)]

2A

and

lim
n→+∞

d(gfxn, ffxn) ⪯
[limn→+∞ d(gfxn, gt) + limn→+∞ d(gt, ggxn)]

2A
.

(4) compatible of type (C) if

lim
n→+∞

d(fgxn, ggxn)

⪯ [limn→+∞ d(fgxn, ft) + limn→+∞ d(ft, ffxn) + limn→+∞ d(ft, ggxn)]

3A

and

lim
n→+∞

d(gfxn, ffxn)

⪯ limn→+∞ d(gfxn, gt) + limn→+∞ d(gt, ggxn) + limn→+∞ d(gt, ffxn)]

3A
,
.

(5) compatible of type (P ) if limn→+∞ d(ffxn, ggxn) = 0A.
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In the following, we give the relationships and properties of above compatibilities.

Proposition 2.1. Let f and g be two compatible mappings of type (A). If one

of f and g is continuous, then f and g are compatible.

Proof. Since f and g are compatible of type (A), we have

0A = limn→+∞ d(fgxn, ggxn) and 0A = limn→+∞ d(gfxn, ffxn).

Suppose that f is continuous. Then limn→+∞ ffxn = limn→+∞ fgxn = ft for

some t ∈ X. We get limn→+∞ d(fgxn, gfxn) = 0A, i.e., f and g are compatible.

The case that g is continuous is done similarly. □

Proposition 2.2. Every pair of compatible mappings of type (A) is compatible

of type (B).

Proof. Suppose that f and g are compatible of type (A). Then

0A = lim
n→+∞

d(fgxn, ggxn)

⪯ limn→+∞ d(fgxn, ft) + limn→+∞ d(ft, ffxn)]

2A

and
0A = lim

n→+∞
d(gfxn, ffxn)

⪯ [limn→+∞ d(gfxn, gt) + limn→+∞ d(gt, ggxn)]

2A
,

as derived. □

Proposition 2.3. Let f and g be continuous on a C∗-algebra-valued metric space

(X,A, d). If f and g are compatible of type (B), then they are compatible of type

(A).

Proof. Let {xn} be a sequence inX such that limn→+∞ fxn = limn→+∞ gxn = t

for some t ∈ X. Since f and g are continuous, we have

lim
n→+∞

d(fgxn, ggxn) ⪯
[limn→+∞ d(fgxn, ft) + limn→+∞ d(ft, ffxn)]

2A
= 0A

and

lim
n→+∞

d(gfxn, ffxn) ⪯
[limn→+∞ d(gfxn, gt) + limn→+∞ d(gt, ggxn)]

2A
= 0A.

Therefore, f and g are compatible of type (A). □

Proposition 2.4. Let f and g be continuous on a C∗-algebra-valued metric space

(X,A, d) into itself. If f and g are compatible of type (B), then they are compatible.
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Proof. Let {xn} be a sequence inX such that limn→+∞ fxn = limn→+∞ gxn = t

for some t ∈ X. Since f and g are continuous, we have

lim
n→+∞

ffxn = ft = lim
n→+∞

fgxn

and

lim
n→+∞

gfxn = gt = lim
n→+∞

ggxn.

By triangle inequality,

d(fgxn, gfxn) ⪯ d(fgxn, ggxn) + d(ggxn, gfxn).

Letting n → +∞ and using f and g are compatible of type (B), we have

lim
n→+∞

d(fgxn, gfxn)

⪯ limn→+∞ d(fgxn, ft) + limn→+∞ d(ft, ffxn)]

2A
+ lim

n→+∞
d(ggxn, gfxn)

= 0A.

Therefore, f and g are compatible. □

Proposition 2.5. Let f and g be continuous on a C∗-algebra-valued metric space

(X,A, d). If f and g are compatible, then they are compatible of type (B).

Proof. Since f and g are compatible, there is {xn} a sequence in X so that

limn→+∞ fxn = limn→+∞ gxn = t for some t ∈ X for which limn→+∞ d(fgxn, gfxn) =

0A. Since f and g are continuous,

lim
n→+∞

ffxn = ft = lim
n→+∞

fgxn

and

lim
n→+∞

gfxn = gt = lim
n→+∞

ggxn,

so

lim
n→+∞

ffxn = lim
n→+∞

fgxn = lim
n→+∞

gfxn = lim
n→+∞

ggxn.

Now

lim
n→+∞

d(fgxn, ggxn) ⪯
[limn→+∞ d(fgxn, ft) + limn→+∞ d(ft, ffxn)]

2A

and

lim
n→+∞

d(gfxn, ffxn) ⪯
[limn→+∞ d(gfxn, gt) + limn→+∞ d(gt, ggxn)]

2A
,

which give f and g be compatible of type (B). □
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Proposition 2.6. Let f and g be continuous on a C∗-algebra-valued metric space

(X,A, d). Then

(1) f and g are compatible if and only if they are compatible of type (B);

(2) f and g are compatible of type (A) if and only if they are compatible of type

(B).

Proof. (1) It suffices to use Propositions 2.4 and 2.5.

(2) It suffices to use Propositions 2.2 and 2.3. □

Proposition 2.7. Let f and g be compatible mappings on a C∗-algebra-valued

metric space (X,A, d). If ft = gt for some t ∈ X, then fgt = fft = ggt = gft.

Proof. Let {xn} be a sequence in X defined by xn = t, n = 1, 2, . . . for some

t ∈ X and ft = gt. Then fxn, gxn → ft as n → +∞. Since f and g are compatible,

d(fgt, gft) = lim
n→+∞

d(fgxn, gfxn) = 0A.

Hence we have fgt = ggt. Since ft = gt, we have fgt = fft = ggt = gft. □

Utilizing Proposition 2.7, we infer

Proposition 2.8. Let f and g be compatible mappings on a C∗-algebra-valued

metric space (X,A, d). Suppose that limn→+∞ fxn = limn→+∞ gxn = t for some

t ∈ X. Then

(a) limn→+∞ gfxn = ft if f is continuous at t.

(b) limn→+∞ fgxn = gt if g is continuous at t.

(c) fgt = gft and ft = gt if f and g are continuous at t.

Proof. (a) Suppose that f is continuous at t. Since

limn→+∞ fxn = limn→+∞ gxn = t for some t ∈ X, we have fgxn → ft as n → +∞.

The mappings f and g are compatible, so

lim
n→+∞

d(gfxn, ft) = lim
n→+∞

d(gfxn, fgxn) + lim
n→+∞

d(fgxn, ft)

= 0A.

Therefore, limn→+∞ gfxn = ft.

(b) The proof of limn→+∞ fgxn = gt follows by similar arguments as in (a).

(c) Suppose that f and g are continuous at t. Since gxn → t as n → +∞ and

f is continuous at t, by (a), gfxn → ft as n → +∞. On the other hand, g is also

continuous at t, gfxn → gt. Thus, we have ft = gt by the uniqueness of limit and

so by Proposition 2.8, fgt = gft. □

Proposition 2.9. Let f and g be compatible mappings of type (B) on a C∗-

algebra-valued metric space (X,A, d). If ft = gt for some t ∈ X, then fgt = fft =

ggt = gft.
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Proof. Let {xn} be in X defined by xn = for n = 1, 2, . . . (for some t ∈ X with

ft = gt). Then fxn, gxn → ft as n → +∞. Since f and g are compatible of type

(B), we have

d(fgt, ggt) = lim
n→+∞

d(fgxn, ggxn)

⪯ [limn→+∞ d(fgxn, fft) + limn→+∞ d(fft, ffxn)]

2A
= 0A.

Thus, fgt = ggt. Since ft = gt, we have fgt = fft = ggt = gft. □

From Proposition 2.9, we have

Proposition 2.10. Let f and g be compatible mappings of type (B) on a C∗-

algebra-valued metric space (X,A, d). Suppose that limn→+∞ fxn = limn→+∞ gxn =

t for some t ∈ X. Then

(a) limn→+∞ ggxn = ft if f is continuous at t.

(b) limn→+∞ ffxn = gt if g is continuous at t.

(c) fgt = gft and ft = gt if f and g are continuous at t.

Proof. (a) Suppose that f is continuous at t. Since

limn→+∞ fxn = limn→+∞ gxn = t for some t ∈ X, we have ffxn, fgxn → ft as

n → +∞. Since f and g are compatible of type (B), we have

lim
n→+∞

d(ft, ggxn) = lim
n→+∞

d(fgxn, ggxn)

⪯ [limn→+∞ d(fgxn, ft) + limn→+∞ d(ft, ffxn)]

2A
= d(ft, ft) = 0A.

Therefore, limn→+∞ ggxn = ft.

(b) The proof of limn→+∞ ffxn = gt follows by similar arguments as in (a).

(c) Suppose that f and g are continuous at t. Since gxn → t as n → +∞ and

f is continuous at t, by (a), ggxn → ft as n → +∞. On the other hand, g is also

continuous at t, ggxn → gt. Thus, we have ft = gt by the uniqueness of limit and

so by Proposition 2.9, fgt = gft. □

Remark 2.1. In Proposition 2.10, let f and g be compatible maps of type (C)

or of type (P ) instead of of type (B), the conclusion of Proposition 2.10 remains the

same.

Remark 2.2. In Proposition 2.10, let f and g be compatible maps of type (C)

or of type (P ) instead of type (B), the conclusion of Proposition 2.10 remains the

same.

The notions of compatibilities and its variants are independent of each other.
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Example 2.2. Take X = R and A = M2(C). Define d : X ×X → A by

d(ν, µ) =

(
|ν − µ| 0

0 k|ν − ν|

)
,

where k > 0. Then (X,A, d) is a C∗-algebra-valued metric space . Consider f and

g defined on X by

fν =

{
1
ν2

if ν ̸= 0,

2 if ν = 0
and gν =

{
1
ν

if ν ̸= 0,

2 if ν = 0.

Then f and g are not continuous at t = 0. Define {xn} in X by xn = n for each

n = 1, 2, . . . . If n → +∞, we have fxn = 1
n2 → t = 0, gxn = 1

n
→ t = 0 and

lim
n→+∞

d(fgxn, gfxn) = lim
n→+∞

d

(
f
1

n
, g

1

n2

)
= lim

n→+∞
d(n2, n2)

∥.∥−→ 0A.

While, we have no existence of the following limits:

lim
n→+∞

d(fgxn, ggxn) = lim
n→+∞

d(n2, n) =

(
|n2 − n| 0

0 k|n2 − n|

)
∥.∥−→ +∞.[

limn→+∞ d(fgxn, f0) + limn→+∞ d(f0, ffxn)
]

2A
∥.∥−→ +∞

and

lim
n→+∞

d(gfxn, ffxn)
∥.∥−→ +∞[

limn→+∞ d(gfxn, g0) + limn→+∞ d(g0, ggxn)
]

2A
∥.∥−→ +∞

Also limn→+∞ d(fgxn, ggxn)
∥.∥−→ +∞ and limn→+∞ d(gfxn, ffxn)

∥.∥−→ +∞ and

we get[
limn→+∞ d(fgxn, f0) + limn→+∞ d(f0, ffxn) + limn→+∞ d(f0, ggxn)

]
3A

∥.∥−→ +∞

and [
limn→+∞ d(gfxn, g0) + limn→+∞ d(g0, ggxn) + limn→+∞ d(g0, ffxn)

]
3A

∥.∥−→ +∞
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Also

lim
n→+∞

d(ffxn, ggxn) = lim
n→+∞

d(n4, n)
∥.∥−→ +∞.

Therefore, f and g are compatible, but they are not compatible of type (A),

compatible of type (B), type (C) and of type (P ).

Example 2.3. Let X = [2, 4] and A = M2(C). Let d : X ×X → A by

d(ν, µ) =

(
|ν − µ| 0

0 k|ν − µ|

)
,

where k > 0. Then (X,A, d) is a C∗-algebra-valued metric space. Define f and

g : X → X by

fν =

{
2 if ν = 2 or ν > 3,

ν + 1 if 2 < ν ≤ 3
and gν =


2 if ν = 2,
ν+4
2

if 2 < ν ≤ 3
ν+1
2

if ν > 3.

Then f and g are not continuous at t = 2. We claim that f and g are not compatible,

but they are compatible of type (A), of type (B), of type (C) and of type (P ).

For this, let {xn} = 3 + 1
n
⊂ [2, 4] so that fxn, gxn → 2.

Now,

lim
n→+∞

d(fgxn, gfxn) ̸
∥.∥−→ 0A.

Further, we have

lim
n→+∞

d(fgxn, ggxn)
∥.∥−→ 0A,[

limn→+∞ d(fgxn, f2) + limn→+∞ d(f2, ffxn)
]

2A

=

(
1
2

0

0 k
2

)
and

lim
n→+∞

d(gfxn, ffxn)
∥.∥−→ 0A,[

limn→+∞ d(gfxn, g2) + limn→+∞ d(g2, ggxn)
]

2A

=

(
1
2

0

0 k
2

)
Also limn→+∞ d(fgxn, ggxn) = 0A and limn→+∞ d(gfxn, ffxn) = 0A and we get[

limn→+∞ d(fgxn, f2) + limn→+∞ d(f2, ffxn) + limn→+∞ d(f2, ggxn)
]

3A
=

(
2
3

0

0 2k
3

)
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and[
limn→+∞ d(gfxn, g2) + limn→+∞ d(g2, ggxn) + limn→+∞ d(g2, ffxn)

]
3A

=

(
2
3

0

0 2k
3

)
as xn → 2 and limn→+∞ fxn = limn→+∞ gxn = 2.

Also,

lim
n→+∞

d(ffxn, ggxn) ̸
∥.∥−→ 0A.

Thus, f and g are compatible mappings of type (A), of type (B), of type (C) but f

and g are not compatible and compatible of type (P ).

3. Common fixed point results

In this section, we prove some common fixed point theorems via compatibility

in C∗-algebra-valued metric space (X,A, d).

Theorem 3.1. Let A,B, S and T be self-mappings on a complete C∗-algebra-

valued metric space (X,A, d) so that:

(C1) SX ⊂ BX and TX ⊂ AX;

(C2)

(d(Sx, Ty))2 ⪯ P ∗M(x, y)P,

for all x, y ∈ X, where P ∈ A with ∥P∥ < 1, and

M(x, y) = max{d(Ax, Sx) · d(By, Ty), d(Ax, Ty) · d(By, Sx), d(By, Sx)·
d(By, Ty),

(d(Ax,By))2, d(Ax, Sx) · d(By, Sx), d(Ax,By) · d(By, Sx), d(Ax,By)·
d(By, Ty)};

(C3) one of A,B, S and T is continuous.

If (A, S) and (B, T ) are compatible, then A,B, T and S possess a unique common

fixed point.

Proof. Take x0 ∈ X. Since SX ⊂ BX, there is x1 ∈ X so that Sx0 = Bx1 =

υ0. Similarly, since TX ⊂ AX, there is x2 ∈ X so that Tx1 = Ax2 = υ1. Continuing

in this direction, one can construct sequences so that

υ2n = Sx2n = Bx2n+1, υ2n+1 = Tx2n+1 = Ax2n+2.

Taking x = x2n and y = x2n+1 in (C2), we have

(d(υ2n, υ2n+1))
2 = d(Sx2n, Tx2n+1) ⪯ P ∗M(x2n, x2n+1)P,
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where

M(x2n, x2n+1)

= max{d(Ax2n, Sx2n) · d(Bx2n+1, Tx2n+1), d(Ax2n, Tx2n+1) · d(Bx2n+1, Sx2n),

d(Bx2n+1, Sx2n) · d(Bx2n+1, Tx2n+1), (d(Ax2n, Bx2n+1))
2, d(Ax2n, Sx2n)·

d(Bx2n+1, Sx2n), d(Ax2n, Bx2n+1) · d(Bx2n+1, Sx2n), d(Ax2n, Bx2n+1)·
d(Bx2n+1, Tx2n+1)} = max{d(υ2n−1, υ2n) · d(υ2n, υ2n+1), d(υ2n−1, υ2n+1) · d(υ2n, υ2n),
d(υ2n, υ2n) · d(υ2n, υ2n+1), (d(υ2n−1, υ2n))

2, d(υ2n−1, υ2n) · d(υ2n, υ2n),
d(υ2n−1, υ2n) · d(υ2n, υ2n), d(υ2n−1, υ2n) · d(υ2n, υ2n+1)}
= max{d(υ2n−1, υ2n) · d(υ2n, υ2n+1), 0A, 0A, (d(υ2n−1, υ2n))

2, 0A, 0A, d(υ2n−1, υ2n)·
d(υ2n, υ2n+1)} = max{d(υ2n−1, υ2n) · d(υ2n, υ2n+1), 0A, (d(υ2n−1, υ2n))

2}.

Suppose that d(υ2n, υ2n+1) ≻ d(υ2n−1, υ2n) for some n, then (d(υ2n, υ2n+1))
2 ≺

(d(υ2n, υ2n+1))
2, a contradiction. So, d(υ2n, υ2n+1) ⪯ d(υ2n−1, υ2n) for each n ≥ 1.

Hence

(d(υ2n, υ2n+1))
2 ⪯ P ∗(d(υ2n−1, υ2n))

2P. (1)

We also obtain

(d(υ2n+1, υ2n+2))
2 ⪯ P ∗(d(υ2n, υ2n+1))

2P. (2)

From (1) and (2), continuing in this direction,

(d(υn, υn+1))
2 ⪯ · · · ⪯ (P ∗)n(d(υ0, υ1))

2P n,

for all n ≥ 2. For m,n ∈ N with m > n, using triangular inequality in C∗-algebra-

valued metric space (X,A, d), we have

(d(υn, υm))
2 ⪯ (d(υn, υn+1))

2 + · · ·+ (d(υm−1, υm))
2
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because that d2 is a C∗-algebra-valued metric as d is a C∗-algebra-valued metric.

Thus,

(d(υn, υm))
2 ⪯ (P ∗)n(d(υ0, υ1))

2P n + · · ·+ (P ∗)m−1(d(υ0, υ1))
2Pm−1

⪯ [(P ∗)nP n + . . . (P ∗)m−1Pm−1](d(υ0, υ1))
2

⪯ [(P n)∗P n + . . . (Pm−1)∗Pm−1](d(υ0, υ1))
2

⪯
m−1∑
i=n

|P i|2(d(υ0, υ1))2

⪯ ∥
m−1∑
i=n

|P i|2(d(υ0, υ1))2∥1A

⪯ ∥
m−1∑
i=n

|P i|2∥∥(d(υ0, υ1))2∥1A

⪯
m−1∑
i=n

∥P 2i∥∥(d(υ0, υ1))2∥1A

⪯ ∥P∥2m−2

(1− ∥P∥)
∥(d(υ0, υ1))2∥1A.

Thus, d(υn, υm)
2 tends to 0A as m,n → +∞. Thus, the sequence {υn} is Cauchy

in X. Consequently, the subsequences {Sx2n}, {Ax2n}, {Tx2n+1} and {Bx2n+1} of

the sequence {υn} also converge to z.

Suppose that A is continuous. Then {AAx2n}, {ASx2n} converge to Az. Since

A and S are compatible, by Proposition 2.8, {SAx2n} is convergent to Az. We claim

that z = Az. Taking x = Ax2n and y = x2n+1 in (C2), we have

(d(SAx2n, Tx2n+1))
2 ⪯ P ∗M(Ax2n, x2n+1)P,

where

M(Ax2n, x2n+1) = max{d(AAx2n, SAx2n) · d(Bx2n+1, Tx2n+1), d(AAx2n, Tx2n+1)·
d(Bx2n+1, SAx2n), d(Bx2n+1, SAx2n) · d(Bx2n+1, Tx2n+1), (d(AAx2n, Bx2n+1))

2,

d(AAx2n, SAx2n) · d(Bx2n+1, SAx2n), d(AAx2n, Bx2n+1) · d(Bx2n+1, SAx2n),

d(AAx2n, Bx2n+1) · d(Bx2n+1, Tx2n+1)}.

Letting n → +∞, we have

(d(Az, z))2 ⪯ P ∗M(z, z)P,

where

M(z, z) = max{d(Az,Az) · d(z, z), d(Az, z) · d(z, Az), d(z, Az) · d(z, z), (d(Az, z))2,
d(Az,Az) · d(z, Az), d(Az, z) · d(z, Az), d(Az, z) · d(z, z)}.
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This gives that d(Az, z) = 0A, i.e., Az = z.

We shall show that Sz = z. Consider x = z and y = x2n+1 in (C2),

(d(Sz, Tx2n+1))
2 ⪯ P ∗M(z, x2n+1)P,

where

M(z, x2n+1) = max{d(Az, Sz) · d(Bx2n+1, Tx2n+1), d(Az, Tx2n+1) · d(Bx2n+1, Sz),

d(Bx2n+1, Sz) · d(Bx2n+1, Tx2n+1), (d(Az,Bx2n+1))
2, d(Az, Sz) · d(Bx2n+1, Sz),

d(Az,Bx2n+1) · d(Bx2n+1, Sz), d(Az,Bx2n+1) · d(Bx2n+1, Tx2n+1)}.

Letting n → +∞, we have

(d(Sz, z))2 ⪯ P ∗M(z, z)P,

where

M(z, z) = max{d(z, Sz) · d(z, z), d(Az, z) · d(z, Sz), d(z, Sz) · d(z, z), (d(Az, z))2,
d(z, Sz) · d(z, Sz), d(z, z) · d(z, Sz), d(z, z) · d(z, z)}.

This leads to Sz = z.

Since SX ⊂ BX, there is u ∈ X so that z = Sz = Bu.

Now, putting x = z and y = u in (C2),

(d(z, Tu))2 = (d(Sz, Tu))2 ⪯ P ∗M(z, u)P,

where

M(z, u) =max{d(Az, Sz) · d(Bu, Tu), d(Az, Tu) · d(Bu, Sz), d(Bu, Sz)·
d(Bu, Tu),(d(Az,Bu))2, d(Az, Sz) · d(Bu, Sz), d(Az,Bu) · d(Bu, Sz), d(Az,Bu)·
d(Bu, Tu)} = max{d(z, z) · d(z, z), d(z, z) · d(z, z), d(z, z) · d(z, Tu), (d(z, z))2,

d(z, z) · d(z, z), d(z, z) · d(z, z), d(z, z) · d(z, Tu)}.

Thus, z = Tu. Since (B, T ) is compatible and Bu = Tu = z, by Proposition 2.7, we

get BTu = TBu and so Bz = BTu = TBu = Tz. Putting again x = z and y = z

in (C2),

(d(z, Bz))2 = (d(Sz, Tz))2 ⪯ P ∗M(z, z)P,

where

M(z, z) =max{d(Az, Sz) · d(Bz, Tz), d(Az, Tz) · d(Bz, Sz), d(Bz, Sz) · d(Bz, Tz),

(d(Az,Bz))2,d(Az, Sz) · d(Bz, Sz), d(Az,Bz) · d(Bz, Sz), d(Az,Bz) · d(Bz, Tz)}
=max{d(z, z) · d(Bz, Tz), d(z,Bz) · d(Bz, z), d(Bz, z) · d(Bz, Tz),

(d(z,Bz))2,d(z, z) · d(Bz, z), d(z, Bz) · d(Bz, z), d(z,Bz) · d(Bz, Tz)}.

Hence z = Bz. We deduce that z = Bz = Tz = Az = Sz, i.e., z is a common fixed

point of A,B, S and T .

The proof is done similarly when B is continuous.
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We consider that S is continuous. Here, {SSx2n} and {SAx2n} are convergent

to Az as n → +∞. Since A and S are compatible, by Proposition 2.8, {ASx2n} is

convergent to Az. Taking x = Sx2n and y = x2n+1 in (C2),

(d(SSx2n, Tx2n+1))
2 ⪯ P ∗M(Sx2n, x2n+1)P,

where

M(Sx2n, x2n+1) = max{d(ASx2n, SSx2n) · d(Bx2n+1, Tx2n+1), d(ASx2n, Tx2n+1)·
d(Bx2n+1, SSx2n), d(Bx2n+1, SSx2n) · d(Bx2n+1, Tx2n+1), (d(ASx2n, Bx2n+1))

2,

d(ASx2n, SSx2n) · d(Bx2n+1, SSx2n), d(ASx2n, Bx2n+1) · d(Bx2n+1, SSx2n),

d(ASx2n, Bx2n+1) · d(Bx2n+1, Tx2n+1)}.

Letting n → +∞, we get

(d(Sz, z))2 ⪯ P ∗M(z, z)P,

where

M(z, z) =max{d(Sz, Sz) · d(z, z), d(Sz, z) · d(z, Sz), d(z, Sz) · d(z, z), (d(Sz, z))2,
d(Sz, Sz) · d(z, Sz), d(Sz, z) · d(z, Sz), d(Sz, z) · d(z, z)}.

so Sz = z. Since SX ⊂ BX, there is v ∈ X so that z = Sz = Bv. By taking

x = Sx2n and y = v in (C2), we have

(d(SSx2n, T v))
2 ⪯ P ∗M(Sx2n, v)P,

where

M(Sx2n, v) = max{d(ASx2n, SSx2n) · d(Bv, Tv), d(ASx2n, T v) · d(Bv, SSx2n),

d(Bv, SSx2n) · d(Bv, Tv), (d(ASx2n, Bv))2, d(ASx2n, SSx2n) · d(Bv, SSx2n),

d(ASx2n, Bv) · d(Bv, SSx2n), d(ASx2n, Bv) · d(Bv, Tv)}.

Letting n → +∞, we have

(d(z, Tv))2 ⪯ P ∗M(z, v)P,

where

M(z, v) =max{d(z, z) · d(z, Tv), d(z, Tv) · d(z, z), d(z, z) · d(z, Tv), (d(z, z))2,
d(z, z) · d(z, z), d(z, z) · d(z, z), d(z, z) · d(z, Tv)},

that is, z = Tv.

Since B and T are compatible and Bv = Tv = z, by Proposition 2.7, we have

BTv = TBv, so Bz = BTv = TBv = Tz. Consider

(d(Sx2n, T z))
2 ⪯ P ∗M(x2n, z)P,
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where

M(x2n, z) = max{d(Ax2n, Sx2n) · d(Bz, Tz), d(Ax2n, T z) · d(Bz, Sx2n),

d(Bz, Sx2n) · d(Bz, Tz), (d(Ax2n, Bz))2, d(Ax2n, Sx2n) · d(Bz, Sx2n),

d(Ax2n, Bz) · d(Bz, Sx2n), d(Ax2n, Bz) · d(Bz, Tz)}.

Letting n → +∞, we get

(d(z, Tz))2 ⪯ P ∗M(z, z)P,

where

M(z, z) =max{d(z, z) · d(Bz, Tz), d(z, Tz) · d(Tz, z), d(Tz, z) · d(Bz, Tz),

(d(z, Tz))2, d(z, z) · d(Tz, z), d(z, Tz) · d(Tz, z), d(z, Tz) · d(Bz, Tz)},

so Tz = z.

Since TX ⊂ AX, there is w ∈ X so that z = Tz = Aw.

On taking x = w and y = z in (C2), we get

(d(Sw, z))2 = (d(Sw, Tz))2 ⪯ P ∗M(w, z)P,

where

M(w, z) = max{d(Aw, Sw) · d(Bz, Tz), d(Aw, Tz) · d(Bz, Sw), d(Bz, Sw)·
d(Bz, Tz), (d(Aw,Bz))2, d(Aw, Sw) · d(Bz, Sw), d(Aw,Bz) · d(Bz, Sw), d(Aw,Bz)·
d(Bz, Tz)} = max{d(z, Sw) · d(z, z), d(z, z) · d(z, Sw), d(z, Sw) · d(z, z), (d(z, z))2,
d(z, Sw) · d(z, Sw), d(z, z) · d(z, Sw), d(z, z) · d(z, z)}.

Thus, Sw = z. Since A and S are compatible and Sw = Aw = z, by Proposition 2.7,

we have ASw = SAw, so Az = ASw = SAw = Sz, i.e., z = Az = Sz = Bz = Tz.

Therefore, z is a common fixed point of A,B, S and T.

The proof is similar when T is continuous.

Finally, suppose that z and w (z ̸= w) are two common fixed points of A,B, S

and T.

On putting x = z and y = w in (C2), we get

(d(z, w))2 = (d(Sz, Tw))2 ⪯ P ∗M(z, w)P,

where

M(z, w) =max{d(Az, Sz) · d(Bw, Tw), d(Az, Tw) · d(Bw, Sz), d(Bw, Sz)·
d(Bw, Tw),(d(Az,Bw))2, d(Az, Sz) · d(Bw, Sz), d(Az,Bw) · d(Bw, Sz),

d(Az,Bw)·d(Bw, Tw)} = max{d(z, z) · d(w,w), d(z, w) · d(w, z), d(w, z) · d(w,w),
(d(z, w))2,d(z, z) · d(w, z), d(z, w) · d(w, z), d(z, w) · d(w,w)},

which yields that z = w. Therefore, z is the unique common fixed point of A,B, S

and T. □
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The following corresponds to compatible mappings of type (A).

Theorem 3.2. Let A,B, S and T be mappings of a complete C∗-algebra-valued

metric space (X,A, d) into itself satisfying (C1)-(C3). If (A, S) and (B, T ) are

compatible of type (A), then A,B, S and T have a unique common fixed point.

Proof. Assume that A is continuous. Since (A, S) is compatible of type (A),

by Proposition 2.1, (A, S) is compatible, so result easily follows using Theorem 3.1.

Similarly, if B is continuous and (B, T ) is compatible of type (A), then (B, T )

is compatible so result easily follows from Theorem 3.1.

Similarly, we can complete the proof when S or T is continuous. □

The following is for compatible mappings of type (B).

Theorem 3.3. Let A,B, S and T be mappings of a complete C∗-algebra-valued

metric space (X,A, d) into itself satisfying (C1)-(C3). If (A, S) and (B, T ) are

compatible of type (B), then A,B, S and T have a unique common fixed point.

Proof. From Theorem 3.1, we have that {υn} is a Cauchy sequence in X.

Consequently, the subsequences {Sx2n}, {Ax2n}, {Tx2n+1} and {Bx2n+1} of {υn}
converge to z.

Assume that S is continuous.

Then {SSx2n} and {SAx2n} converge to Sz as n → +∞. The compatibility of

(A, S) of type (B), and Proposition 2.10 yield that {AAx2n} is convergent to Sz.

On putting x = Ax2n and y = x2n+1 in (C2), we get

(d(SAx2n, Tx2n+1))
2 ⪯ P ∗M(Ax2n, x2n+1)P,

where

M(Ax2n, x2n+1) = max{d(AAx2n, SAx2n) · d(Bx2n+1, Tx2n+1),

d(AAx2n, Tx2n+1) · d(Bx2n+1, SAx2n), d(Bx2n+1, SAx2n) · d(Bx2n+1, Tx2n+1),

(d(AAx2n, Bx2n+1))
2, d(AAx2n, SAx2n) · d(Bx2n+1, SAx2n), d(AAx2n, Bx2n+1)·

d(Bx2n+1, SAx2n), d(AAx2n, Bx2n+1) · d(Bx2n+1, Tx2n+1)}.

Letting n → +∞, we get

(d(Sz, z))2 ⪯ P ∗M(z, z)P,

where

M(z, z) = max{d(Sz, Sz) · d(z, z), d(Sz, z) · d(z, Sz), d(z, Sz) · d(z, z), (d(Sz, z))2,
d(Sz, Sz) · d(z, Sz), d(Sz, z) · d(z, Sz), d(Sz, z) · d(z, z)},

That is, Sz = z. Since SX ⊂ BX, there is u ∈ X so that z = Sz = Bu. Putting

x = Ax2n and y = u in (C2), we get

(d(SAx2n, Tu))
2 ⪯ P ∗M(Ax2n, u)P,
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where

M(Ax2n, u) = max{d(AAx2n, SAx2n) · d(Bu, Tu), d(AAx2n, Tu) · d(Bu, SAx2n),

d(Bu, SAx2n) · d(Bu, Tu), (d(AAx2n, Bu))2, d(AAx2n, SAx2n) · d(Bu, SAx2n),

d(AAx2n, Bu) · d(Bu, SAx2n), d(AAx2n, Bu) · d(Bu, Tu)}.

Letting n → +∞,

(d(Sz, Tu))2 ⪯ P ∗M(z, u)P,

where

M(z, u) = max{d(Sz, Sz) · d(Sz, Tu), d(Sz, Tu) · d(Sz, Sz), d(Sz, Sz) · d(Sz, Tu),
(d(Sz, Sz))2, d(Sz, Sz) · d(Sz, Sz), d(Sz, Sz) · d(Sz, Sz), d(Sz, Sz) · d(Sz, Tu)}.

This gives that Tu = Sz (z = Tu). Since the pair (B, T ) is compatible of type (B)

and Bu = z = Tu. By Proposition 2.10, we have TBu = BTu and so Bz = BTu =

TBu = Tz.

On taking x = x2n and y = z in (C2),

(d(Sx2n, T z))
2 ⪯ P ∗M(x2n, z)P,

where

M(x2n, z) = max{d(Ax2n, Sx2n) · d(Bz, Tz), d(Ax2n, T z) · d(Bz, Sx2n), d(Bz, Sx2n)·
d(Bz, Tz), (d(Ax2n, Bz))2, d(Ax2n, Sx2n) · d(Bz, Sx2n), d(Ax2n, Bz) · d(Bz, Sx2n),

d(Ax2n, Bz) · d(Bz, Tz)}.

Letting n → +∞,

(d(z, Tz))2 ⪯ P ∗M(z, z)P,

where

M(z, z) = max{d(z, z) · d(Tz, Tz), d(z, Tz) · d(Tz, z), d(Tz, z) · d(Tz, Tz), (d(z, Tz))2,
d(z, z) · d(Tz, z), d(z, Tz) · d(Tz, z), d(z, Tz) · d(Tz, Tz)},

which leads to Tz = z.

Since TX ⊂ AX, there is v ∈ X so that z = Tz = Av. On putting x = v and y = z

in (C2), we get

(d(Sv, Tz))2 ⪯ P ∗M(v, z)P,

where

M(v, z) =max{d(Av, Sv) · d(Bz, Tz), d(Av, Tz) · d(Bz, Sv), d(Bz, Sv) · d(Bz, Tz),

(d(Av,Bz))2,d(Av, Sv) · d(Bz, Sv), d(Av,Bz) · d(Bz, Sv), d(Av,Bz) · d(Bz, Tz)},
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so Sv = z. Since the pair (A, S) is compatible of type (B) and Sv = z = Av, it

follows from Proposition 2.9 that Sz = SAv = ASv = Az. Therefore, Az = Bz =

Sz = Tz = z and so z is a common fixed point of A,B, S and T.

Suppose that A is continuous. Then {AAx2n} and {ASx2n} converge to Az as

n → +∞. Since (A, S) is compatible of type (B), it follows from Proposition 2.10

that {SSx2n} is convergent to Az. By putting x = Sx2n and y = x2n+1 in (C2), we

get

(d(SSx2n, Tx2n+1))
2 ⪯ P ∗M(Sx2n, x2n+1)P,

where

M(Sx2n, x2n+1) = max{d(ASx2n, SSx2n) · d(Bx2n+1, Tx2n+1), d(ASx2n, Tx2n+1)·
d(Bx2n+1, SSx2n), d(Bx2n+1, SSx2n) · d(Bx2n+1, Tx2n+1), (d(ASx2n, Bx2n+1))

2,

d(ASx2n, SSx2n) · d(Bx2n+1, SSx2n), d(ASx2n, Bx2n+1) · d(Bx2n+1, SSx2n),

d(ASx2n, Bx2n+1) · d(Bx2n+1, Tx2n+1)}

Letting n → +∞, we get

(d(Az, z))2 ⪯ P ∗M(z, z)P, for all x, y ∈ X,

where

M(z, z) = max{d(Az,Az) · d(z, z), d(Az, z) · d(z, Az), d(z, Az) · d(z, z), (d(Az, z))2,
d(Az,Az) · d(z, Az), d(Az, z) · d(z, Az), d(Az, z) · d(z, z)}.

That is, Az = z. On putting x = z and y = x2n+1 in (C2), we get

(d(Sz, Tx2n+1))
2 ⪯ P ∗M(z, x2n+1)P,

where

M(z, x2n+1) = max{d(Az, Sz) · d(Bx2n+1, Tx2n+1), d(Az, Tx2n+1) · d(Bx2n+1, Sz),

d(Bx2n+1, Sz) · d(Bx2n+1, Tx2n+1), (d(Az,Bx2n+1))
2, d(Az, Sz) · d(Bx2n+1, Sz),

d(Az,Bx2n+1) · d(Bx2n+1, Sz), d(Az,Bx2n+1) · d(Bx2n+1, Tx2n+1)}.

Letting n → +∞, we get

(d(Sz, z))2 ⪯ P ∗M(z, z)P, for all x, y ∈ X,

where

M(z, z) = max{d(z, Sz) · d(z, z), d(z, z) · d(z, Sz), d(z, Sz) · d(z, z), (d(z, z))2,
d(z, Sz) · d(z, Sz), d(z, z) · d(z, Sz), d(z, z) · d(z, z)}.
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Hence Sz = z. Since SX ⊂ BX, there is w ∈ X so that z = Sz = Bw. On putting

x = z and y = w in (C2), we get

(d(z, Tw))2 = (d(Sz, Tw))2 ⪯ P ∗M(z, w)P, for all x, y ∈ X,

where

M(z, w) = max{d(Az, Sz) · d(Bu, Tw), d(Az, Tw) · d(Bw, Sz), d(Bw, Sz) · d(Bw, Tw),

(d(Az,Bw))2, d(Az, Sz) · d(Bw, Sz), d(Az,Bw) · d(Bw, Sz), d(Az,Bw) · d(Bw, Tw)}
= max{d(z, z) · d(z, Tw), d(z, Tw) · d(z, z), d(z, z) · d(z, Tw), (d(z, z))2,
d(z, z) · d(z, z), d(z, z) · d(z, z), d(z, z) · d(z, Tw)}.

This leads to z = Tw. Since (B, T ) is compatible of type (B) and Bw = z = Tw,

from Proposition 2.9, TBw = BTw and so Bz = BTw = TBw = Tz.

On taking x = z and y = z in (C2), we have

(d(Sz, Tz))2 ⪯ P ∗M(z, z)P,

where

M(z, z) = max{d(Az, Sz) · d(Bz, Tz), d(Az, Tz) · d(Bz, Sz), d(Bz, Sz)·
d(Bz, Tz),(d(Az,Bz))2, d(Az, Sz) · d(Bz, Sz), d(Az,Bzy) · d(Bz, Sz), d(Az,Bz)·
d(Bz, Tz)} = max{d(z, z) · d(Tz, Tz), d(z, Tz) · d(Tz, z), d(Tz, z) · d(Tz, Tz),

(d(z, Bz))2, d(z, z) · d(Bz, z), d(z, Tz) · d(Tz, z), d(z, Tz) · d(Tz, Tz)}.

Then z = Tz. Therefore, z is a common fixed point of A,B, S and T.

The proof is similar when B or T are continuous.

Finally, if z and w (z ̸= w) are two common fixed points, then we have

(d(z, w))2 = (d(Sz, Tw))2 ⪯ P ∗M(z, w)P,

where

M(z, w) = max{d(Az, Sz) · d(Bw, Tw), d(Az, Tw) · d(Bw, Sz),

d(Bw, Sz) · d(Bw, Tw), (d(Az,Bw))2, d(Az, Sz) · d(Bw, Sz),

d(Az,Bw) · d(Bw, Sz), d(Az,Bw) · d(Bw, Tw)},

so z = w. Therefore, z is the unique common fixed point of A,B, S and T .

□

The following corresponds to compatible mappings of type (C).

Theorem 3.4. Let A,B, S and T be mappings of a C∗-algebra-valued metric

space (X,A, d) into itself satisfying (C1)-(C3).

Suppose that the pairs (A, S) and (B, T ) are compatible of type (C). Then A,B, S

and T have a unique common fixed point.
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Proof. Here we skip the proof, keeping in view the length of the paper. □

Finally, we give the following theorem for compatible mappings of type (P ).

Theorem 3.5. Let A,B, S and T be mappings of a complete C∗-algebra-valued

metric space (X,A, d) into itself satisfying (C1)-(C3).

Suppose that the pairs (A, S) and (B, T ) are compatible of type (P ). Then A,B, S

and T have a unique common fixed point.

Proof. From Theorem 3.1, we have that {υn} is a Cauchy sequence in X.

Consequently, the subsequences {Sx2n}, {Ax2n}, {Tx2n+1} and {Bx2n+1} of {υn}
converge to z as n → +∞.

Assume that S is continuous.

Then {SSx2n}, {SAx2n} converge to Sz as n → +∞. Since (A, S) is compatible of

type (P ), {AAx2n} converges to Sz as n → +∞.

We claim that Sz = z. On putting x = Ax2n and y = x2n+1 in (C2), we have

(d(SAx2n, Tx2n+1))
2 ⪯ P ∗M(Ax2n, x2n+1)P,

where

M(Ax2n, x2n+1) = max{d(AAx2n, SAx2n) · d(Bx2n+1, Tx2n+1),

d(AAx2n, Tx2n+1) · d(Bx2n+1, SAx2n), d(Bx2n+1, SAx2n) · d(Bx2n+1, Tx2n+1),

(d(AAx2n, Bx2n+1))
2, d(AAx2n, SAx2n) · d(Bx2n+1, SAx2n), d(AAx2n, Bx2n+1)·

d(Bx2n+1, SAx2n), d(AAx2n, Bx2n+1) · d(Bx2n+1, Tx2n+1)}.

Letting n → +∞, we have

(d(Sz, z))2 ⪯ P ∗M(z, z)P,

where

M(z, z) =max{d(Sz, Sz) · d(z, z), d(Sz, z) · d(z, Sz), d(z, Sz) · d(z, z),
(d(Sz, z))2, d(Sz, Sz) · d(z, Sz), d(Sz, z) · d(z, Sz), d(Sz, z) · d(z, z)}.

This proves that Sz = z. Since SX ⊂ BX, there is u ∈ X so that z = Sz = Bu.

We claim that Tu = z. On taking x = x2n and y = u in (C2), we have

(d(Sx2n, Tu))
2 ⪯ P ∗M(x2n, u)P,

where

M(x2n, u) = max{d(Ax2n, Sx2n) · d(Bu, Tu), d(Ax2n, Tu) · d(Bu, Sx2n),

d(Bu, Sx2n) · d(Bu, Tu), (d(Ax2n, Bu))2, d(Ax2n, Sx2n) · d(Bu, Sx2n),

d(Ax2n, Bu) · d(Bu, Sx2n), d(Ax2n, Bu) · d(Bu, Tu)}.

At the limit n → +∞, we have
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(d(z, Tu))2 ⪯ P ∗M(z, u)P,

where

M(z, u) =max{d(z, z) · d(z, Tu), d(z, Tu) · d(z, z), d(z, z) · d(z, Tu),
(d(z, z))2, d(z, z) · d(z, z), d(z, z) · d(z, z), d(z, z) · d(z, Tu)}.

Thus, z = Tu. So Bu = Tu = z. Since (B, T ) is compatible of type (P ), we have

TTu = BBu, which gives that d(Bz, Tz) = 0A. Hence Tz = Bz.

Now we claim that Tz = z. On putting x = x2n and y = z in (C2), we have

(d(Sx2n, T z))
2 ⪯ P ∗M(x2n, z)P,

where

M(x2n, z) = max{d(Ax2n, Sx2n) · d(Bz, Tz), d(Ax2n, T z) · d(Bz, Sx2n),

d(Bz, Sx2n) · d(Bz, Tz), (d(Ax2n, Bz))2, d(Ax2n, Sx2n) · d(Bz, Sx2n),

d(Ax2n, Bz) · d(Bz, Sx2n), d(Ax2n, Bz) · d(Bz, Tz)}.

Letting n → +∞, we have z = Tz, so Bz = Tz = z.

Since TX ⊂ AX, there is v ∈ X so that z = Tz = Av.

We claim that Sv = z. Now, on taking x = v and y = z in (C2), we have

(d(Sv, z))2 = (d(Sv, Tz))2 ⪯ P ∗M(v, z)P,

where

M(v, z) =max{d(Av, Sv) · d(Bz, Tz), d(Av, Tz) · d(Bz, Sv), d(Bz, Sv)·
d(Bz, Tz),(d(Av,Bz))2, d(Av, Sv) · d(Bz, Sv), d(Av,Bz) · d(Bz, Sv), d(Av,Bz)·

d(Bz, Tz)}.

This implies that z = Sv. Therefore, z = Sv = Av. Since (A, S) is compatible of

type (P ), we have SSv = AAv, which implies that d(Sz,Az) = 0A. Hence Sz = Az.

Since Az = Bz = Sz = Tz = z, z is a common fixed point of A,B, S and T .

The proof is the same when either A, or B, or T is continuous.

The uniqueness follows easily. □

Following example supports our main theorems, there by making our concepts

more transparent and easy to understand.

Example 3.1. Let X = [0, 3
2
] with A = M2(C).

Define d : X ×X → A by

d(ν, µ) =

(
|ν − µ| 0

0 k|ν − µ|

)
,

where k > 0. Clearly, (X,A, d) is a C∗-algebra-valued metric space .

Define Sν = 1, Tν = 1, Bν = ν and Aν = ν+1
2

for all ν ≥ 1. Note that
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(i) SX ⊂ BX, TX ⊂ AX;

(ii) A,B, S and T are continuous;

(iii) the pairs (A, S) and (B, T ) are compatible, and are compatible of type (A),

of type (B), of type (C) and of type (P ).

Take xn = 1 + 1
n
for n ≥ 1. Then xn → 1 as n → +∞. Now,

lim
n→+∞

Axn = lim
n→+∞

Sxn = lim
n→+∞

Bxn = lim
n→+∞

Txn = 1 = t ∈ X

as n → +∞. Also,

lim
n→+∞

d(ASxn, SAxn) = 0A, lim
n→+∞

d(BTxn, TBxn) = 0A,

lim
n→+∞

d(ASxn, SSxn) = 0A, lim
n→+∞

d(SAxn, AAxn) = 0A,

lim
n→+∞

d(BTxn, TTxn) = 0A, lim
n→+∞

d(TBxn, BBxn) = 0A.

(iv) For ∥P∥ < 1, we have

(d(Sx, Ty))2 ⪯ P ∗M(x, y)P,

holds for all x, y ∈ X, where P ∈ A and

M(x, y) = max{d(Ax, Sx) · d(By, Ty), d(Ax, Ty) · d(By, Sx), d(By, Sx) · d(By, Ty),

(d(Ax,By))2, d(Ax, Sx) · d(By, Sx), d(Ax,By) · d(By, Sx),

d(Ax,By) · d(By, Ty)}.

All conditions of main theorems are satisfied, and 1 is the unique common fixed point

of A,B, S and T .

The interested reader could also consult [3, 4].
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Existence and uniqueness of the solutions of some classes of integral equations C*-algebra-
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bia

Email address: nicola.fabiano@gmail.com


	1. Introduction and preliminaries
	2. Properties of compatible maps and its variants
	3. Common fixed point results
	References

