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Abstract. In this paper, we introduce the notion of b-Banach spaces and we

present some examples. Also, we give an important extension of the Hahn-Banach

theorem in a b-Banach space with an application.

1. Introduction and Preliminaries

A Banach space is a complete normed vector space. A Banach space is thus a

vector space with a metric that allows the calculation of vector length and distance

between vectors, and it is complete in the sense that a Cauchy sequence of vectors

always converges to a unique limit within the space.

Consistent with [1] and [3] the following definitions we will discuss on b-Banach

spaces.

The characterization of b-metrics is their discontinuity in general. So, as a b-

norm generates a b-metric, it is not continues in general. Measure of noncompactness

and its weak version [4], also, PPf dependent fixed point results [2] which are applied

in studying the delay integral equations, delay fractional integral equations and

other related topics are subjects due to Banach spaces.Therefore, via studying the

b-Banach spaces, one can also demonstrate this equations in this new structure.

In this section, we introduce the concept of b-Banach space and we present some

examples. We start by definition of a b-norm function.

Definition 1.1. Let X be a vector space and s ≥ 1 be a given real number. A

function ∥·∥ : X → [0,+∞) is a b-norm iff, for all x, y ∈ X, the following conditions

are satisfied:

b1. ∥x∥ = 0 iff x = 0,

b2. ∥λx∥ = |λ|s∥x∥,
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b3. ∥x+ y∥ ≤ s(∥x∥+ ∥y∥).
The pair (X, ∥ · ∥) is called a b-normed space.

Definition 1.2. A b-complete b-normed space is called a b-Banach space.

Here, we present an example to show that in general a b-normed need not nec-

essarily be a norm.

Example 1.3. Let (X, ∥ · ∥) be a normed space, and ∥x∥∗ = ∥x∥p. Then ∥.∥∗ is

a b-normed. For example, for X = R, f(x) = |x|p is a b-norm on R with s = 2p−1,

but is not a norm on R.

Example 1.4. Let X be the set of all Lebesgue measurable functions on [0, 1]

such that ∫ 1

0

|f(x)|2 dx < +∞.

Define ∥f∥ =
√∫ 1

0
|f(x)|2 dx which is a norm on X. Then, from the previous

example, ∥.∥2 is a b-norm on X, with s = 2.

Every b-normed space (X, ∥.∥) is a b-metric space (X, d) with the induced b-

metric d(x, y) = ∥x− y∥.
Let s ≥ 1 be a given real number. In every vector space X, we can easily define

a function

d(x, y) =


0, x = y,

2s, x ̸= y,

which is a b-metric on X which is not necessarily a b-normed space, normed space

and metric space.

Definition 1.5. A b-Banach space X is said to be b-strictly convex if

∥x+ y∥ < s(∥x∥+ ∥y∥),

for all x, y ∈ X with x ̸= y.

Example 1.6. Consider X = Rn (n ̸= 2) with a norm ∥ · ∥ defined by

∥x∥ = max
1≤i≤n

{x2
i }, x = (x1, ..., xn) ∈ Rn.

Then X is a b-normed space with s = 2 which is not b-strictly convex. To see it, let

x = (1, 0, 0, ..., 0) and y = (1, 1, 0, ..., 0). It is easy to see that x ̸= y, ∥x∥ = ∥y∥ = 1,

and ∥x+ y∥ = 4 = 2(∥x∥+ ∥y∥).
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Example 1.7. Consider X = Rn (n ̸= 2) with a norm ∥.∥ defined by

∥x∥ =
n∑

i=1

x2
i , x = (x1, ..., xn) ∈ Rn.

Then X is a b-normed space with s = 2 which is not b-strictly convex. To see it, let

x = (1, 0, ..., 0) and y = (1, 0, ..., 0). It is easy to see that x ̸= y, ∥x∥ = ∥y∥ = 1, and

∥x+ y∥ = 4 = 2(∥x∥+ ∥y∥).

In the following, the results are straightforward derived from the definition.

Theorem 1.8. Let X and Y be b-normed spaces and let T : X → Y be a linear

operator. Then the following are equivalent.

(i) The operator T is b-continuous.

(ii) The operator T is continuous at 0.

(iii) The operator T is b-bounded on X.

2. Some results

Let Bb(X, Y ) consists of all b-bounded linear operators from a b-normed space

X into a b-normed space Y . Also, for each T ∈ Bb(X, Y ) the b-norm of T is the

nonnegative real number

sup{∥Tx∥ : x ∈ BX}.
Since ∥x∥−s∥Tx∥ = ∥T ( x

∥x∥)∥ ≤ ∥T∥, hence ∥Tx∥ ≤ ∥T∥∥x∥s, for all x ∈ X.

Theorem 2.1. Let X and Y be b-normed spaces. Then Bb(X, Y ) is a normed

space under the operator norm. If Y be a b-Banach space, then so is Bb(X, Y ) is a

b-Banach space.

Proof. Suppose that T1, T2 ∈ Bb(X, Y ). It is clear that ∥T1∥ ≥ 0. Then there

is an x0 ∈ X, necessarily nonzero, such that T1x0 ̸= 0, and so T1(
x0

∥x0∥) ̸= 0. It

follows that T1 = 0 if and only if T1x = 0 for each x ∈ X, that is, if and only if

∥T1∥ = 0. If λ be a scalar, then

∥λT1∥ = sup{∥λT1(x)∥ : x ∈ BX} = |λ|ssup{∥T1(x)∥ : x ∈ BX} = |λ|s∥T1∥.

If x0 ∈ BX , then

∥(T1 + T2)(x0)∥ ≤ s(∥T1∥∥x0∥s + ∥T2∥∥x0∥s) ≤ s(∥T1∥+ ∥T2∥),

and so

∥T1 + T2∥ = sup{∥(T1 + T2)(x0)∥ : x ∈ BX} ≤ s(∥T1∥+ ∥T2∥).

Thus, the operator norm is a b-norm on Bb(X, Y ). Suppose that Y is a b-Banach

space. Let {Tn} be a Cauchy sequence in Bb(X, Y ). If x ∈ X, then for all n,m ∈ N
we have

∥Tnx− Tmx∥ = ∥(Tn − Tm)(x)∥ ≤ ∥Tn − Tm∥∥x∥s.
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It follows that the sequence {Tn} is Cauchy in Y and hence convergent. Define

T : X → Y by Tx = lim
n

Tnx. Since the vector space Y is b-continuous, the map T

is linear. To see that T is b-bounded, first notice that the boundedness of the Cauchy

sequence {Tn} gives a M > 0 such that ∥T∥ ≤ M for all n, so that ∥T (x)∥ ≤ M for

all x ∈ BX and all n. Since lim
n

∥Tnx∥ ≤ M , therefore, ∥Tx∥ ≤ M for each x ∈ BX

and so, T is b-bounded. □

The main purpose of this section is to show that a bounded linear function on a

subspace of a b-Banach space can always be extended to a bounded linear functional.

Definition 2.2. Let p be a real valued function on a vector space X. Then p is

called positive homogeneous, if p(tx) = tsp(x) for some t > 0 and for all x ∈ X, and

is called b-subadditive if p(x + y) ≤ s[p(x) + p(y)] whenever x, y ∈ X. If p has both

properties, then it is said to be a b-subadditive homogeneous function.

In the following theorem we give an important extension of the Hahn Banach

theorem to b-Banach spaces.

Theorem 2.3. Suppose that p : X → [0,+∞) be b-subadditive and positive ho-

mogeneous on a vector space X, Y be a closed subspace of X such that dim(X/Y ) =

n and f0 be a bounded linear functional on Y such that f0(y) ≤ p(y) whenever y ∈ Y.

Then there is a bounded linear functional f on X such that the restriction of f to

Y is f0 and f(x) ≤ snp(x) whenever x ∈ X.

Proof. At first, we show that if Y ̸= X, then there is an extension f1 of f0 to a

subspace of X larger than Y such that f1 is still dominated by p on this subspace.

Let x1 ∈ X \ Y and Y1 = ⟨Y ∪ {x1}⟩. If y + tx1 = y′ + t′x1, where y, y′ ∈ Y and

t, t′ ∈ R, then x1(t− t′) = y′ − y ∈ Y, and so t = t′ and y = y′. Thus, each member

of Y1 has a unique representation in the form y + tx1, where y ∈ Y and t ∈ R.
Whenever y1, y2 ∈ Y , since f0 is a functional, we have

f0(y1) + f0(y2) = f0(y1 + y2)

≤ p(y1 − x1 + x1 + y2),

≤ s[p(y1 − x1) + p(x1 + y2)]

and so,

f0(y1)− sp(y1 − x1) ≤ sp(x1 + y2)− f0(y2).

It follows that

sup{f0(y)− sp(y − x1) : y ∈ Y } ≤ inf{sp(x1 + y)− f0(y) : y ∈ Y }.

So, there is t1 ∈ R such that

sup{f0(y)− sp(y − x1) : y ∈ Y } ≤ t1 ≤ inf{sp(x1 + y)− f0(y) : y ∈ Y }.
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Let f1(y+ tx1) = f0(y)+ tt1 for all y ∈ Y and t ∈ R. We show that f1 is a functional

on Y1. Let y, y
′ ∈ Y and t, t′ ∈ R. We have

f1(α(y + tx1) + (y′ + t′x1)) = f1(αy + y′ + (tα + t′)x1))

= f0(αy + y′) + (tα + t′)t1

= αf1(y + tx1)) + f1(y
′ + t′x1).

It follows from the definition of t1 that for any y ∈ Y and any positive t, we have

f1(y + tx1) = f0(y) + tt1 = t[f0(t
−1y) + tt1]

≤ ts[p(x1 + t−1y)]

= sp(y + tx1),

and

f1(y − tx1) = f0(y)− tt1 = t[f0(t
−1y)− t1]

≤ st[p(t−1y − x1)]

= sp(y − tx1),

that is, for all x ∈ Y1, we have f1(x) ≤ sp(x). □

Theorem 2.4. Let Y be a closed subspace of a b-normed space X such that

dim(X/Y ) = n and T0 be a bounded functional on Y. Then T0 can be extended to a

bounded functional T defined on X such that ∥T0∥ ≤ ∥T∥ ≤ sn∥T0∥.

Proof. Let p(x) = ∥T0∥∥x∥s, for any x ∈ X. Thus, p is b-subadditive and

positive homogeneous on X and T0(x) ≤ p(x) for all x ∈ Y . By Theorem 2.3 and

its proof, there is a real positive extension T of T0 defined on X such that for all

x ∈ X,

∥Tx∥ ≤ snp(x),

and so, for all x ∈ X, we have

∥Tx∥ ≤ sn∥T0∥∥x∥s,

and so, ∥T∥ ≤ sn∥T0∥. □
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