Mathematical Analysis and its Contemporary Applications Volume 3, Issue 3, 2021, 27–32 doi: 10.30495/maca.2021.1929965.1011 ISSN 2716-9898

A new version of the Hahn-Banach theorem in b-Banach spaces

Mohammad Reza Haddadi, Hossein Alaeidizaji, and Vahid Parvaneh

ABSTRACT. In this paper, we introduce the notion of *b*-Banach spaces and we present some examples. Also, we give an important extension of the Hahn-Banach theorem in a *b*-Banach space with an application.

1. Introduction and Preliminaries

A Banach space is a complete normed vector space. A Banach space is thus a vector space with a metric that allows the calculation of vector length and distance between vectors, and it is complete in the sense that a Cauchy sequence of vectors always converges to a unique limit within the space.

Consistent with [1] and [3] the following definitions we will discuss on b-Banach spaces.

The characterization of b-metrics is their discontinuity in general. So, as a bnorm generates a b-metric, it is not continues in general. Measure of noncompactness and its weak version [4], also, PPf dependent fixed point results [2] which are applied in studying the delay integral equations, delay fractional integral equations and other related topics are subjects due to Banach spaces. Therefore, via studying the b-Banach spaces, one can also demonstrate this equations in this new structure.

In this section, we introduce the concept of b-Banach space and we present some examples. We start by definition of a b-norm function.

Definition 1.1. Let X be a vector space and $s \ge 1$ be a given real number. A function $\|\cdot\| : X \to [0, +\infty)$ is a b-norm iff, for all $x, y \in X$, the following conditions are satisfied:

 b_1 . ||x|| = 0 iff x = 0,

 $b_2. \|\lambda x\| = |\lambda|^s \|x\|,$

Key words and phrases. Write your keywords.

²⁰¹⁰ Mathematics Subject Classification. Primary: b-normed space, b-Banach Space; Secondary: Hahn-Banach theorem.

 $b_3. ||x + y|| \le s(||x|| + ||y||).$ The pair $(X, ||\cdot||)$ is called a b-normed space.

Definition 1.2. A b-complete b-normed space is called a b-Banach space.

Here, we present an example to show that in general a *b*-normed need not necessarily be a norm.

Example 1.3. Let $(X, \|\cdot\|)$ be a normed space, and $\|x\|_* = \|x\|^p$. Then $\|.\|_*$ is a b-normed. For example, for $X = \mathbb{R}$, $f(x) = |x|^p$ is a b-norm on \mathbb{R} with $s = 2^{p-1}$, but is not a norm on \mathbb{R} .

Example 1.4. Let X be the set of all Lebesgue measurable functions on [0, 1] such that

$$\int_0^1 |f(x)|^2 \, dx < +\infty.$$

Define $||f|| = \sqrt{\int_0^1 |f(x)|^2 dx}$ which is a norm on X. Then, from the previous example, $||.||^2$ is a b-norm on X, with s = 2.

Every b-normed space $(X, \|.\|)$ is a b-metric space (X, d) with the induced bmetric $d(x, y) = \|x - y\|$.

Let $s \ge 1$ be a given real number. In every vector space X, we can easily define a function

$$d(x,y) = \begin{cases} 0, & x = y, \\ \\ 2^s, & x \neq y, \end{cases}$$

which is a b-metric on X which is not necessarily a b-normed space, normed space and metric space.

Definition 1.5. A b-Banach space X is said to be b-strictly convex if

$$||x + y|| < s(||x|| + ||y||),$$

for all $x, y \in X$ with $x \neq y$.

Example 1.6. Consider $X = \mathbb{R}^n$ $(n \neq 2)$ with a norm $\|\cdot\|$ defined by

$$||x|| = \max_{1 \le i \le n} \{x_i^2\}, \ x = (x_1, ..., x_n) \in \mathbb{R}^n$$

Then X is a b-normed space with s = 2 which is not b-strictly convex. To see it, let x = (1, 0, 0, ..., 0) and y = (1, 1, 0, ..., 0). It is easy to see that $x \neq y$, ||x|| = ||y|| = 1, and ||x + y|| = 4 = 2(||x|| + ||y||).

Example 1.7. Consider $X = \mathbb{R}^n$ $(n \neq 2)$ with a norm $\|.\|$ defined by

$$||x|| = \sum_{i=1}^{n} x_i^2, \ x = (x_1, ..., x_n) \in \mathbb{R}^n.$$

Then X is a b-normed space with s = 2 which is not b-strictly convex. To see it, let x = (1, 0, ..., 0) and y = (1, 0, ..., 0). It is easy to see that $x \neq y$, ||x|| = ||y|| = 1, and ||x + y|| = 4 = 2(||x|| + ||y||).

In the following, the results are straightforward derived from the definition.

Theorem 1.8. Let X and Y be b-normed spaces and let $T : X \to Y$ be a linear operator. Then the following are equivalent.

(i) The operator T is b-continuous.

(ii) The operator T is continuous at 0.

(iii) The operator T is b-bounded on X.

2. Some results

Let $B^b(X, Y)$ consists of all b-bounded linear operators from a b-normed space X into a b-normed space Y. Also, for each $T \in B^b(X, Y)$ the b-norm of T is the nonnegative real number

$$\sup\{\|Tx\|: x \in B_X\}.$$

Since $||x||^{-s}||Tx|| = ||T(\frac{x}{||x||})|| \le ||T||$, hence $||Tx|| \le ||T|| ||x||^s$, for all $x \in X$.

Theorem 2.1. Let X and Y be b-normed spaces. Then $B^b(X,Y)$ is a normed space under the operator norm. If Y be a b-Banach space, then so is $B^b(X,Y)$ is a b-Banach space.

PROOF. Suppose that $T_1, T_2 \in B^b(X, Y)$. It is clear that $||T_1|| \ge 0$. Then there is an $x_0 \in X$, necessarily nonzero, such that $T_1x_0 \ne 0$, and so $T_1(\frac{x_0}{||x_0||}) \ne 0$. It follows that $T_1 = 0$ if and only if $T_1x = 0$ for each $x \in X$, that is, if and only if $||T_1|| = 0$. If λ be a scalar, then

$$\|\lambda T_1\| = \sup\{\|\lambda T_1(x)\| : x \in B_X\} = |\lambda|^s \sup\{\|T_1(x)\| : x \in B_X\} = |\lambda|^s \|T_1\|.$$

If $x_0 \in B_X$, then

 $||(T_1 + T_2)(x_0)|| \le s(||T_1|| ||x_0||^s + ||T_2|| ||x_0||^s) \le s(||T_1|| + ||T_2||),$

and so

$$||T_1 + T_2|| = \sup\{||(T_1 + T_2)(x_0)|| : x \in B_X\} \le s(||T_1|| + ||T_2||).$$

Thus, the operator norm is a *b*-norm on $B^b(X, Y)$. Suppose that Y is a *b*-Banach space. Let $\{T_n\}$ be a Cauchy sequence in $B^b(X, Y)$. If $x \in X$, then for all $n, m \in \mathbb{N}$ we have

$$||T_n x - T_m x|| = ||(T_n - T_m)(x)|| \le ||T_n - T_m|| ||x||^s.$$

It follows that the sequence $\{T_n\}$ is Cauchy in Y and hence convergent. Define $T: X \to Y$ by $Tx = \lim_{n} T_n x$. Since the vector space Y is b-continuous, the map T is linear. To see that T is b-bounded, first notice that the boundedness of the Cauchy sequence $\{T_n\}$ gives a M > 0 such that $||T|| \le M$ for all n, so that $||T(x)|| \le M$ for all $x \in B_X$ and all n. Since $\lim_{n} ||T_n x|| \le M$, therefore, $||Tx|| \le M$ for each $x \in B_X$ and so, T is b-bounded.

The main purpose of this section is to show that a bounded linear function on a subspace of a *b*-Banach space can always be extended to a bounded linear functional.

Definition 2.2. Let p be a real valued function on a vector space X. Then p is called positive homogeneous, if $p(tx) = t^s p(x)$ for some t > 0 and for all $x \in X$, and is called b-subadditive if $p(x + y) \leq s[p(x) + p(y)]$ whenever $x, y \in X$. If p has both properties, then it is said to be a b-subadditive homogeneous function.

In the following theorem we give an important extension of the Hahn Banach theorem to b-Banach spaces.

Theorem 2.3. Suppose that $p: X \to [0, +\infty)$ be b-subadditive and positive homogeneous on a vector space X, Y be a closed subspace of X such that $\dim(X/Y) =$ n and f_0 be a bounded linear functional on Y such that $f_0(y) \leq p(y)$ whenever $y \in Y$. Then there is a bounded linear functional f on X such that the restriction of f to Y is f_0 and $f(x) \leq s^n p(x)$ whenever $x \in X$.

PROOF. At first, we show that if $Y \neq X$, then there is an extension f_1 of f_0 to a subspace of X larger than Y such that f_1 is still dominated by p on this subspace. Let $x_1 \in X \setminus Y$ and $Y_1 = \langle Y \cup \{x_1\} \rangle$. If $y + tx_1 = y' + t'x_1$, where $y, y' \in Y$ and $t, t' \in \mathbb{R}$, then $x_1(t - t') = y' - y \in Y$, and so t = t' and y = y'. Thus, each member of Y_1 has a unique representation in the form $y + tx_1$, where $y \in Y$ and $t \in \mathbb{R}$. Whenever $y_1, y_2 \in Y$, since f_0 is a functional, we have

$$f_0(y_1) + f_0(y_2) = f_0(y_1 + y_2)$$

$$\leq p(y_1 - x_1 + x_1 + y_2),$$

$$\leq s[p(y_1 - x_1) + p(x_1 + y_2)]$$

and so,

$$f_0(y_1) - sp(y_1 - x_1) \le sp(x_1 + y_2) - f_0(y_2)$$

It follows that

$$\sup\{f_0(y) - sp(y - x_1) : y \in Y\} \le \inf\{sp(x_1 + y) - f_0(y) : y \in Y\}.$$

So, there is $t_1 \in \mathbb{R}$ such that

$$\sup\{f_0(y) - sp(y - x_1) : y \in Y\} \le t_1 \le \inf\{sp(x_1 + y) - f_0(y) : y \in Y\}.$$

Let $f_1(y+tx_1) = f_0(y) + tt_1$ for all $y \in Y$ and $t \in \mathbb{R}$. We show that f_1 is a functional on Y_1 . Let $y, y' \in Y$ and $t, t' \in \mathbb{R}$. We have

$$f_1(\alpha(y + tx_1) + (y' + t'x_1)) = f_1(\alpha y + y' + (t\alpha + t')x_1))$$

= $f_0(\alpha y + y') + (t\alpha + t')t_1$
= $\alpha f_1(y + tx_1) + f_1(y' + t'x_1)$.

It follows from the definition of t_1 that for any $y \in Y$ and any positive t, we have

$$f_1(y + tx_1) = f_0(y) + tt_1 = t[f_0(t^{-1}y) + tt_1]$$

$$\leq ts[p(x_1 + t^{-1}y)]$$

$$= sp(y + tx_1),$$

and

$$f_1(y - tx_1) = f_0(y) - tt_1 = t[f_0(t^{-1}y) - t_1]$$

$$\leq st[p(t^{-1}y - x_1)]$$

$$= sp(y - tx_1),$$

that is, for all $x \in Y_1$, we have $f_1(x) \leq sp(x)$.

Theorem 2.4. Let Y be a closed subspace of a b-normed space X such that dim(X/Y) = n and T_0 be a bounded functional on Y. Then T_0 can be extended to a bounded functional T defined on X such that $||T_0|| \leq ||T|| \leq s^n ||T_0||$.

PROOF. Let $p(x) = ||T_0|| ||x||^s$, for any $x \in X$. Thus, p is *b*-subadditive and positive homogeneous on X and $T_0(x) \leq p(x)$ for all $x \in Y$. By Theorem 2.3 and its proof, there is a real positive extension T of T_0 defined on X such that for all $x \in X$,

$$||Tx|| \le s^n p(x),$$

and so, for all $x \in X$, we have

$$||Tx|| \le s^n ||T_0|| ||x||^s,$$

and so, $||T|| \le s^n ||T_0||$.

References

- I. A. Bakhtin, The contraction mapping principle in almost metric spaces, Funct. Anal., 30(1989), 26–37.
- [2] S.R. Bernfeld, V. Lakshmikantham and Y.M. Reddy, Fixed point theorems of operators with PPF dependence in Banach spaces, Applicable Anal., 6(1977), 271–280.
- [3] S. Czerwik, Nonlinear set-valued contraction mappings in b-metric spaces, Atti Sem. Mat. Fis. Univ. Modena., 46(2)(1998), 263-276.
- [4] Kuratowski, K. Sur les espaces complets. Fund. Math., 15(1930), 301–309.

32 MOHAMMAD REZA HADDADI, HOSSEIN ALAEIDIZAJI, AND VAHID PARVANEH

Department of Mathematics, Payame Noor University, P.O. Box. 19395-3697, Tehran, Iran

 $Email \ address: \verb"alaeidizaj.hossein@gmail.com"$

DEPARTMENT OF MATHEMATICS, GILAN-E-GHARB BRANCH, ISLAMIC AZAD UNIVERSITY, GILAN-E-GHARB, IRAN

Email address: zam.dalahoo@gmail.com,

Received : May 2021 Accepted : June 2021