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Some results on disjointness preserving Fredholm

operators between certain Banach function

algebras
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Abstract. For two algebras A and B, a linear map T : A−→B is disjointness

preserving if x · y = 0 implies Tx · Ty = 0 for all x, y ∈ A and is said Fredholm

if dim(ker(T )) i.e. the nullity of T and codim(T (E)) i.e. the corank of T are fi-

nite. We develop some results of Fredholm linear disjointness preserving operators

from C0(X) into C0(Y ) for locally compact Hausdorff spaces X and Y in [9], into

regular Banach function algebras. In particular, we consider weighted composi-

tion Fredholm operators as a typical example of disjointness preserving Fredholm

operators on certain regular Banach function algebras.

1. Introduction

Let A,B be two spaces of functions a map T : A −→ B is disjointness preserving

if f · g = 0 implies Tf · Tg = 0 for all f, g ∈ A. Weighted composition operators are

examples of linear disjointness preserving or separating operators between spaces

of functions. When X and Y are compact Hausdorff spaces, each linear separating

bijection operator T : C(X)−→C(Y ) is a continuous weighted composition opera-

tor where C(X) is the Banach algebra of all complex-valued functions on X with

supremum norm [7]. This result has been extended to C0(X), the Banach algebra

of all continuous complex valued function on locally compact space X, which is

vanishing at infinity [8]. Linear operators T : Lp(µ) −→ Lp(µ) with the property

that f · g = 0, a.e. implies Tf · Tg = 0, a.e. were considered by Banach in [5].

Disjointness preserving operators between two vector lattices is studied in [1, 4].

It was proved in [6] that when A,B are certain regular semisimple commutative

Banach algebras then every separating bijection is automatically continuous and its

inverse is separating and under extra conditions on B induced a homeomorphism

between the structure spaces of A and B. In their joint paper [9], J. Jeang and
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N.C. Wong considered Fredholm linear separating operators from C0(X) into C0(Y )

for locally compact Hausdorff spaces X and Y and showed that if there exists such

map, then X and Y are homeomorphic after removing finite subsets. A complete

description of the Fredholm disjointness preserving operators between ultrametric

spaces of (bounded and not necessarily bounded) continuous functions defined on

N -compact spaces given in [3].

In this paper, we give some results about disjointness preserving Fredholm oper-

ators between certain regular Banach function algebras and in the sequel we will deal

with properties of weighted composition Fredholm operators as a standard example

of all disjointness preserving Fredholm operators.

2. preliminaries

Let A be a commutative Banach algebra, the space of all multiplicative linear

functional on A which is called the structure space of A, i.e. σ(A), is a locally

compact Hausdorff space with respect to Gelfand topology. For a ∈ A, let â ∈
C0(σ(A)) be its Gelfand transform of a such that â(ϕ) = ϕ(a), for all ϕ ∈ σ(A) .

In this case if the Gelfand transform a→ â is injective then A is called semisimple.

A commutative Banach algebra A is said to be regular if for each closed subset E

of σ(A) and ϕ ∈ σ(A)\E there exists a ∈ A, such that â(ϕ) = 1 and â = 0 on E.

Let X be a locally compact Hausdorff space, a subalgebra A of C0(X) is called

Banach function algebra, if it is separating the points of X and for all x ∈ X, there

exists f ∈ A such that f(x) 6= 0. It is clear that every Banach function algebra

is commutative and semisimple and each commutative semisimple Banach algebra

is considered, as a Banach function algebra on its structure space σ(A). When

(A, ‖·‖A) is a Banach function algebra on a locally compact Hausdorff space X,

then ‖·‖∞ ≤ ‖·‖A, where ‖·‖∞ is supremum norm of C0(X), also for each f ∈ A and

x ∈ X we use f(x) instead of f̂(x). A uniform algebra on X is a Banach function

algebra whose complete norm is the supremum norm on X. For each ideal I of A we

denote the hull set of I by hA(I) = {x ∈ X : f(x) = 0, forallf ∈ I}. The Jacobson

radical of a commutative Banach algebra A is defined by Rad(A) =
⋂
ϕ∈σ(A) kerϕ.

Let X∞ be the one-point compactification of X, clX∞(E) and int(E) mean re-

spectively the closure and interior of subset E of X in X∞, coz(f) denote the cozero

set of f ∈ A i.e. the set {x ∈ X : f(x) 6= 0}.
A Banach function algebra A on a locally compact Hausdorff space X is said

to satisfy Ditkin’s condition, if for each x ∈ X∞ and f ∈ A, with f(x) = 0 there

exists a sequence {fn} in A such that fn vanishing on a neighborhood of x and

‖fnf − f‖A−→0.

Let E and F be Banach vector spaces a linear map T : E−→F is said Fredholm

if dim(ker(T )) i.e. the nullity of T and codim(T (E)) i.e. the corank of T are finite.

We say that a bounded linear map T : E−→F is bounded bellow if there exists
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positive real number r such that ‖Te‖ ≥ r‖e‖, for each e ∈ E. It follows from the

open mapping theorem that T is a bounded bellow if and only if T is injective and

has closed range. Also each bounded linear map T with finite corank has a closed

range, see [2].

3. Fredholm operators between certain Banach function algebras

Suppose A and B be Banach function algebras on their structure spaces X and

Y respectively and T : A−→B be a disjointness preserving operator. The evaluation

map δy on B is defined by δy(g) = g(y) for each y ∈ Y and Y0 will stand for the set

of elements y ∈ Y where δy ◦ T 6= 0. In this case, for each y ∈ Y0, the support of

δy ◦ T denoted by supp( δy ◦ T ) , is defined as the set of all x ∈ X∞ the one point

compactification of X such that for each neighborhood U of x in X∞ there exists

an element g ∈ B with coz(g) ⊆ U and δy ◦ T (g) 6= 0. Let y ∈ Y0 then the set supp(

δy ◦ T ) is non empty. If, in addition, A is regular, then supp( δy ◦ T ) is a singleton

( see Lemma 1 of [6] ). In this case the support map h : Y0−→X of T is defined as

h(y) =supp(δy ◦ T ). In the sequel we shall use the following proposition concerning

disjointness preserving operators between regular Banach function algebras.

Proposition 3.1. Let A and B be regular Banach function algebras with struc-

ture spaces X and Y , respectively, such that A satisfies the Ditkin’ s condition.

Let T : A−→B be a disjointness preserving operator. There exist continuous maps

h : Y0−→X (which is called the support map of T ) and ω : h−1(X) ⊆ Y0−→C which

is non-vanishing such that

(a) for each neighborhood U in X∞ and f ∈ A, f|U∩X ≡ 0 implies that Tf|h−1(U) ≡
0.

(b) h(coz(Tf)) ⊆ clX∞(coz(f)) for all f ∈ A.

(c) Let Yc be the set of all y ∈ Y0, such that δy ◦ T is continuous on (A, ‖ · ‖A)

and Yd be the complement of Yc in Y0, then h(Yc) ⊆ X.

(d) For each y ∈ Y , the equality Tf(y) = ω(y)·f(h(y)), holds for each f ∈ A if

and only if y ∈ Yc.
(e) Yc is closed in h−1(X).

(f) h(Yd) is a subset of the limit points of X∞.

(g) The set h(Yd) ∩ int(K) is finite, for every compact subset K of X.

(h) If T is injective, then h(Y0) is a dense subset of X∞.

Proof. See the proof of propositions 3,4 and 5 in [6].

�

Now we prove some results in the following two lemmas which will be used in

section 4.

Lemma 3.2. Let A and B be regular Banach function algebras with structure

spaces X and Y , respectively, where A satisfies the Ditkin’s condition. Let T :
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A−→B be a disjointness preserving operator with finite nullity m. Then X\clX∞(h(Y0))

consists of k isolated points, where k ≤ m. Moreover, for each compact sub-

set K of X we have, int(K) ∩ clX∞(h(Yc)) = int(K) ∩ clX∞(h(Y0)), consequently

X\clX∞(h(Yc)) = X\clX∞(h(Y0)).

Proof. Assume first that there exist distinct isolated points x1, x2, ..., xm+1in

X\clX∞(h(Y0)) and let V1, V2, ..., Vm+1 be disjoint open neighborhoods of elements

x1, x2, ..., xm+1 in X\clX∞(h(Y0)), respectively. For each i = 1, 2, ...,m + 1 let Ui
be an open neighborhood of xi such that clX∞(Ui) ⊆ Vi. Then by the regularity

of A for each i = 1, ...,m + 1 there exists an element fi ∈ A, such that fi(xi) = 1

and fi = 0 on X\Ui. Let y ∈ Yc ∪ Yd = Y0 be an arbitrary point. We can see

that h(y) 6∈ clX∞(coz(fi)), which implies that y 6∈ coz(Tfi) according to Proposition

3.1(b), that is, Tfi(y) = 0. Since Tfi = 0 on Y \Y0, we conclude that Tfi = 0, i.e.

fi ∈ ker(T ). This implies that dim ker(T ) ≥ m + 1, since fi’s are linearly indepen-

dent. This contradiction shows that the open subset X\clX∞(h(Y0)) of X consists

of at most m isolated points. Now suppose that K is a compact subset of X. Then

int(K)\clX∞(h(Yc)) ⊆ (int(K)\clX∞(h(Y0))) ∪ (int(K) ∩ h(Yd)), which implies that

int(K)\clX∞(h(Yc)) is a finite open subset of X, since both int(K)\clX∞(h(Y0))

and int(K) ∩ h(Yd) are finite by the above argument and by Proposition 3.1(g).

Therefore, int(K)\clX∞(h(Yc)) consists of isolated points. Using this fact that

h(Yd) is a subset of the limit points of X∞ (see Proposition 3.1(f)), we conclude

that (int(K)\clX∞(h(Yc))) ∩ h(Yd) = ∅ and consequently int(K)\clX∞(h(Yc)) ⊆
int(K)\clX∞(h(Y0)). Therefore, int(K)∩ clX∞(h(Yc)) = int(K)∩ clX∞(h(Y0)), which

implies thatX∩clX∞(h(Yc)) = X∩clX∞(h(Y0)) and hence the final result follows. �

In the following definition we assume that A and B be regular Banach function

algebras with structure spaces X and Y , respectively, where A satisfies the Ditkin’s

condition and T : A−→B be a disjointness preserving operator.

Definition 3.1. We define an equivalence relation ∼ on Yc such that y ∼ y′ if

and only if h(y) = h(y′). For y ∈ Yc let [y] be the equivalence class of y. We define

M = {y ∈ Yc : card([y]) > 1} and m(T ) = card(
⋃

([y]\{y})) =
∑
{card([y]) − 1 :

[y] ∈ Yc/∼}, where the union is taken over all distinct elements [y] ∈ Yc/∼ with

y ∈M .

Remark 3.3. For each f ∈ A, Proposition 3.1(d) shows that if Tf(y) = 0, for

some y ∈ Yc then Tf(y′) = 0 for all y′ ∈ [y].

Lemma 3.4. Let A and B be regular Banach function algebras with structure

spaces X and Y , respectively, where A satisfies the Ditkin’s condition. Let T :

A−→B be a disjointness preserving Fredholm operator with finite nullity m and

corank n, then m(T ) + card(Y \Y0) ≤ n.
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Proof. Suppose that the inequality m(T )+card(Y \Y0) ≤ n does not hold, i.e.,

there exist y(1,0), y(2,0) ..., y(t0,0) ∈ Y \Y0 and x1, ..., xk ∈ h(Yc) with corresponding

points y(1,j), y(2,j), ..., y(tj ,j) ∈ h−1(xj) ∩ Yc for j = 1, 2, ..., k such that
∑k

j=1(tj −
1) + t0 ≥ n + 1. For j = 0, 1, 2, ..., k , let g(i,j) ∈ B such that g(i,j)(y(i,j)) = 1 and

g(i,j)(y(i′,j′)) = 0, whenever i 6= i′ or j 6= j′, for 1 ≤ i ≤ tj − 1 and for j = 0,

1 ≤ i ≤ t0. We can assume that g(i,j)’s have disjoint supports. Now consider the

following subset of B, G = {g(1,0), ..., g(t0,0), g(1,1), ..., g(t1−1,1), ..., g(1,k), ..., g(tk−1,k)}.
Using Remark 3.3 we show that G has no intersection with T (A). Indeed, for

1 ≤ i ≤ t0 if g(i,0) = Tf , for some f ∈ A, then g(i,0)(y(i,0)) = Tf(y(i,0)) = 0,

which is a contradiction. Now if there exists f ∈ A such that g(i,j) = Tf , for some

j = 1, 2, ..., k and 1 ≤ i ≤ tj − 1, then since for each i′ 6= i, 1 ≤ i′ ≤ tj − 1, y(i,j)
and y(i′,j) are in the same equivalence class and moreover, g(i,j)(y(i′,j)) = 0, it follows

that g(i,j)(y(i,j)) = 0, which is again a contradiction. We now show that the elements

of G are linearly independent functions in B modulo the range of T . In fact, if

g =
∑
λ(i,j)g(i,j) ∈ T (A), where the sum is taken over all (i, j) with g(i, j) ∈ G, and

λ(i,j) are complex numbers, then since y(i,0) ∈ Y \Y0 for 1 ≤ i ≤ t0, it follows that

g(y(i,0)) = 0, which implies easily that λ(i,0) = 0 for all 1 ≤ i ≤ t0. On the other

hand, since for each j = 1, 2, ..., k, g(y(tj ,j)) = 0, and y(tj ,j) is in the same equivalence

class of y(i,j) for all 1 ≤ i ≤ tj − 1 it follows that λ(i,j) = g(y(i,j)) = 0. Therefore,

dim (B/T (A)) ≥ n + 1, which is a contradiction. Hence m(T ) + card(Y \Y0) ≤ n as

desired. �

4. Weighted composition Fredholm operators

In this section we give some results on weighted composition fredholm operator

T : A−→B, as an example of disjointness preserving fredholm linear maps, defined

between certain regular Banach function algebras A and B by Tf(y) = ω(y)f(h(y)),

for f ∈ A and an appropriate function h : Y−→X and for a non-vanishing function

ω : Y−→C. In the sequel A,B are regular Banach function algebras with structure

spaces X and Y , respectively, where A satisfies the Ditkin’s condition and B is a

uniform algebra.

Lemma 4.1. Let T : A−→B be a weighted composition operator of the form

Tf(y) = ω(y)f(h(y)), y ∈ Y and f ∈ A, where h : Y−→X and ω : Y−→C are

continuous functions and ω is non-vanishing. If T has a closed range, then there

exists a positive constant r such that for each x ∈ h(Y )

0 < r ≤ sup
y∈h−1({x})

|ω(y)|.

Proof. We note that, using the closed graph theorem, T is continuous. First

consider the case that T is injective. Then since T has a closed range it follows
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easily that T is bounded bellow. So there exists a positive real number r such that

r‖f‖A ≤ ‖Tf‖Y for all f ∈ A. Let x ∈ h(Y ) and U, V be open neighborhoods of

x in X such that clX(U) is compact and clX(U) ⊆ V . By the regularity of A there

exists a function fUV ∈ A such that fUV = 1 on U and fUV = 0 on X\V .Therefore

r‖fUV ‖A ≤ ‖TfUV ‖Y = sup
y∈Y
|ω(y)fUV (h(y))| = sup

h(y)∈V
|ω(y)||fUV (h(y))|

≤ sup
h(y)∈V

|ω(y)|‖fUV ‖X ≤ sup
h(y)∈V

|ω(y)|‖fUV ‖A.

Therefore, r ≤ supy∈h−1(V )|ω(y)|. The above argument shows that we can choose

a net {yλ} in Y and take ε > 0 small enough, such that h(yλ)−→x and |ω(yλ)| >
r − ε. Passing through a subnet we can assume that yλ−→y0 for some y0 ∈ Y∞.

Hence for all U and V as above we have |TfUV (yλ)| = |ω(yλ)| > r − ε > 0, for

sufficiently large λ, thus y0 6= ∞ and hence y0 ∈ Y . Therefore h(y0) = x and

r − ε ≤ |ω(y0)| ≤ supy∈h−1({x}) |ω(y)|. Since ε can be arbitrary small, this implies

the desired inequality. Now assume that T is not injective. Hence in this case h(Y )

cannot be dense in X. Set I = ker(T ), then clearly I is a closed ideal in A and

so A/I is a Banach algebra with structure space σ(A/I) = hA(I). We first show

that hA(I) = clX(h(Y )). Obviously clX(h(Y )) ⊆ hA(I). Conversely, let x0 ∈ hA(I)

and assume on the contrary that x0 6∈ clX(h(Y )). Then by the regularity of A,

there exists a function f ∈ A such that f(x0) = 1 and f = 0 on h(Y ). Therefore,

Tf(y) = ω(y) · f(h(y)) = 0 for all y ∈ Y which implies f ∈ I. On the other

hand we have f(x0) 6= 0 which is a contradiction. Thus hA(I) = clX(h(Y )). We

now show that A/I is semisimple. for each y ∈ Y let ϕh(y) : A/I−→C be defined

by ϕh(y)(f + I) = f(h(y)). Clearly ϕh(y) is well-defined and is a non-zero complex

homomorphism onA/I. Hence if f ∈ A and f+I ∈ Rad(A/I), then, f(h(y)) = 0 for

each y ∈ Y , which implies that Tf = 0, that is f ∈ I. Therefore A/I is semisimple

and we can consider A/I as a Banach function algebra on its maximal ideal space.

Through this identification ϕh(y) is, indeed, the same evaluation homomorphism

δh(y). Now let T̃ : A/I−→B be defined with T̃ (f + I) = Tf then T̃ is injective and

is a weighted composition operator of the form T̃ (f + I)(y) = ω(y) · δh(y)(f + I).

Clearly T̃ has a closed range as well. Therefore the conclusion follows from the first

part of proof. �

Corollary 4.2. Under the hypotheses of the above lemma, h(Y ) is a closed subset

of X.

Proof. Let x0 ∈ clX(h(Y )) and x0 6∈ h(Y ). Then there exists a net {yλ} in Y

such that h(yλ) 6= x0 and h(yλ)−→x0. Using the above lemma for each h(yλ) instead

of x and replacing each yλ by an appropriate point in Y we can assume that {ω(yλ)}
is away from zero. By passing through a subnet, if necessary , we can also assume

that yλ−→y0 for some y0 ∈ Y∞. If y0 ∈ Y , then h(y0) = x0 which is impossible, thus
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y0 = ∞. Therefore, 0 = limλ Tf(yλ) = limλ ω(yλ)f(h(yλ)), for each f ∈ A, which

implies that f(x0) = limλ f(h(yλ)) = 0, for each f ∈ A, which is impossible. Thus

h(Y ) is closed in X. �

Before stating the next theorem we note that for each isolated point x ∈ X, the

regularity of A shows that the characteristic function χ{x} is an element of A.

Theorem 4.3. Under the hypothesis of the above lemma if T is Fredholm with

nullity m and corank n, then

(a) X\h(Y ) = {x1, ..., xm}, where x1, ..., xm are isolated points of X. Moreover,

ker(T ) = span{χ{x1}, ..., χ{xm}}.
(b) ω is away from zero, i.e. there exists a positive real number r such that for

each y ∈ Y , 0 < r ≤ |ω(y)|.
(c) h : Y \M−→h(Y )\h(M) and h̃ : Y/∼−→h(Y ), [y] 7→ h(y) are homeomor-

phism.

Proof. (a) We first note that since h and ω are continuous and Tf(y) =

ω(y)f(h(y)) for all y ∈ Y it follows easily that Y = Yc = Y0 where Yc and Y0 are

the subsets associated to the separating map T in Proposition 3.1. Using Lemma

3.2 we have X\h(Y ) = {x1, ..., xk} where k ≤ m and x1, ..., xk are isolated points

of X. So it suffices to show that k = m and {χ{x1}, ..., χ{xm}} generates ker(T ). It

is clear that for a function f ∈ A, f ∈ ker(T ), if and only if f = 0 on h(Y ), if

and only if there exist λ1, ..., λk such that f =
∑k

i=1 λiχxi . Hence ker(T ) = span

{χ{x1}, ..., χ{xk}}. Since {χ{xi}}ki=1 is linearly independent and dim ker(T ) = m, we

conclude that k = m, as desired.

(b) Using the same argument as in Lemma 3.4 we obtain m(T ) < ∞, which

implies, in particular, that M is a finite subset of Y . By Lemma 4.1, there exists

r1 > 0 , such that 0 < r1 ≤ supy∈h−1({x}) |ω(y)| for all x ∈ h(Y ). Then it is easy to

see that for r = min{r1, |ω(y)| : y ∈ M}, the inequality 0 < r ≤ |ω(y)| holds for all

y ∈ Y .

(c) Obviously the restriction map h : Y \M−→h(Y )\h(M) is a bijective con-

tinuous map. We shall prove that the inverse map h−1 : h(Y )\h(M)−→Y \M is

continuous as well. Let {h(yλ)}λ be a net in h(Y )\h(M), such that h(yλ)−→h(y)

for some y ∈ Y \M and assume on the contrary that {yλ} does not converge to y.

Passing through a subnet, we may assume that yλ−→y0 for some y0 ∈ Y∞ with

y0 6= y. If y0 = ∞ then 0 = Tf(y0) = limλ Tf(yλ) = limλ ω(yλ)f(h(yλ)). Using

part (b) we conclude that limλ(h(yλ)) = 0, i.e. f(h(y)) = 0 for each f ∈ A, hence

h(y) = ∞, which is a contradiction. Thus y0 6= ∞, i.e. y0 ∈ Y and consequently

h(yλ)−→h(y0). Therefore, h(y) = h(y0), which concludes that y = y0 a contradic-

tion. To prove that h̃ : Y/∼−→h(Y ) is a homeomorphism, We first note that h̃ is a

continuous bijection. Hence it suffices to show that h̃ is an open map. For, suppose

that Ũ is an open subset of Y/∼ and let U = {y ∈ Y : [y] ∈ Ũ}. Then U is an open
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subset of Y and since h : Y \M−→h(Y )\h(M) is a homeomorphism, so it suffices

to show that each point x ∈ h̃(Ũ) ∩ h(M) is an interior point of h̃(Ũ). Suppose on

the contrary that there exists x ∈ h̃(Ũ) ∩ h(M) and {xλ}λ in h(Y )\h̃(Ũ) such that

for each λ, xλ /∈ h(M) and xλ−→x. Let yλ = h−1(xλ). As the equivalence classes

[yλ] 6∈ Ũ imply yλ 6∈ U then there exists a subnet {yλα} of {yλ} and y0 ∈ Y∞\U such

that yλα−→y0. Let y0 ∈ Y then from this fact that y0 6∈ U we imply [y0] 6∈ Ũ , on the

other hand h̃([y0]) = h(y0) = limα h(yλα) = limα xλα = x ∈ h̃(Ũ) which is a contra-

diction. Thus y0 = ∞ and consequently 0 = limα Tf(yλα) = limα ω(yλα)f(h(yλα)).

Now by part (b) we conclude that limα f(h(yλα)) = 0. Hence f(x) = 0 for all f ∈ A
which is impossible. Therefore, x is an interior point of h̃(Ũ) and this completes the

proof. �
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