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Generalized Ulam-Hyers stability of an alternate
additive-quadratic-quartic functional equation in
fuzzy Banach spaces

John Michael Rassias!, Elumalai Sathya?, and Mohan Arunkumar?

ABSTRACT. In this paper, we obtain and establish the generalized Ulam-Hyers
stability of an additive-quadratic-quartic functional equation in fuzzy Banach
spaces.

1. Introduction and Preliminaries

For the past eight years the stability of functional equations was a hot topic in
this research field. The first stability question was raised by S. M. Ulam [39] in
1940.

For very general functional equations, the concept of stability for functional
equations arises when we replace the functional equation by an inequality which
acts as a perturbation of the equation. Thus the stability question of functional
equations is that how do the solutions of the inequality differ from those of the given
functional equation? If the answer is affirmative, we would say that the equation is
stable.

The first affirmative partial answer to the question of Ulam for Banach spaces
was given by D. H. Hyers [21] in the succeeding year 1941. It was further generalized
and admirable outcome was achieved by a number of authors [2, 17, 30, 31, 37,
38, 40]. The solution and generalized Ulam-Hyers of various additive, quadratic,
cubic and quartic functional equations in a variety of Banach spaces was established
in [1, 6,12, 13, 14, 18, 19, 23, 29, 33, 32, 34, 35|, and references cited therein.
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The general solution and generalized Ulam-Hyers stability of additive-quadratic-
quartic functional equations

faty+2)+flaty—2)+ fle—y+2)+fl@a—y—2)
=2[fle+y) +fe -y +fly+2)+fly—2)+ [z +2) + [z - 2)]
—4f(x) = 4f(y) = 2[f(2) + f(=2)] (1)

using Hyers direct method was investigated by J. M. Rassias et. al., in [36]. The
following elementary results are taken from [36].

Lemma 1.1. [36] If f : G — H is an odd mapping satisfying (1), then
f2x) =2f(x) (2)

for all x € G, where [ is additive.

Lemma 1.2. [36] If f : G — H is an even mapping satisfying (1) and if
G2 : G — H is a mapping given by
¢@2(r) = f(2r) - 16f(z) (3)
for all x € G, then
q2(27) = 4ga(x) (4)
for all x € G, where g5 is quadratic.

Lemma 1.3. [36] If f : G — H is an even mapping satisfying (1) and if
qs: G — H is a mapping given by

@a(z) = f(22) — 4f(2) ()
for all x € G, then
q4(2x) = 16g4() (6)
for all x € G, where q4 is quartic.
Remark 1.4. [36] Let f : G — H be a mapping satisfying (1) and g2,q4 : G — H
be a mapping defined in (3) and (5) then

1

(@) — g2(x)) (7)

fla) = 5

forallx € G.

In this paper, we prove the generalized Ulam-Hyers stability of the additive-
quadratic-quartic functional equation (1) in fuzzy Banach spaces. It is easy to check
that equation (1) has a solution as g(x) = ax + bx? + ca’.
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2. Definitions on Fuzzy Banach Spaces

In this section, we present the definitions and notations on fuzzy normed spaces.
We use the definition of fuzzy normed spaces given in [8, 25, 26, 27, 28]. We note
that some results on the stability of various functional equations can be found in
[4, 11, 15].

Definition 2.1. Let X be a real linear space. A function N : X x R — [0, 1]
(the so-called fuzzy subset) is said to be a fuzzy norm on X if for all x,y € X and
all s, t € R,

FNS1) N(z,¢) =0, forc <0

EFNSQ) x =0 if and only if N(x,c) =1, for all ¢ > 0;

(FNS3) N(cx,t)=N (m ﬁ) if ¢ £ 0;

(FNS4) N(x+y,s+t) >min{N(z,s), N(y,t)};

(FNS5) N(z,-) is a non-decreasing function on R and lim;_,N(z,t) = 1;
(FNS6)  forx #0,N(x,-) is (upper semi) continuous on R.

The pair (X, N) is called a fuzzy normed linear space. One may regard N(X,t)
as the truth-value of the statement the norm of x is less than or equal to the real
number t.

Example 2.2. Let (X, ||-|]) be a normed linear space. Then
t

N(z,t)= {t+ [l

0, t<0, reX

t>0, relX,

18 a fuzzy norm on X.

Definition 2.3. Let (X, N) be a fuzzy normed linear space. Let x,, be a sequence

in X. Then x, is said to be convergent if there exists x € X such that lim N(x, —
n—oo

x,t) =1, for allt > 0. In that case, x is called the limit of the sequence x,, and we

denote it by N — lim z, = x.
n—oo

Definition 2.4. A sequence x,, in X is called Cauchy if for each € > 0 and each
t > 0 there exists ng such that for alln > ng and all p > 0, we have N(xy1p—2,,t) >
1—ce

Definition 2.5. Every convergent sequence in a fuzzy normed space is Cauchy.
If each Cauchy sequence is convergent, then the fuzzy norm is said to be complete
and the fuzzy normed space is called a fuzzy Banach space.

Definition 2.6. A mapping f : X — Y between fuzzy normed spaces X and
Y is continuous at a point xq if for each sequence {x,} covering to xo in X, the
sequence f{x,} converges to f(xo). If f is continuous at each point of xo € X, then
f s said to be continuous on X.
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The stability of a quiet number of functional equations in Fuzzy normed spaces
was given in [3, 25, 26, 27, 28]. Throughout the paper, we consider Ps, (P, N) and
(P2, N') are linear space, fuzzy normed space and fuzzy Banach space, respectively.
Define a mapping g : Py — Py by
Gos(w,y,2) = g(x +y+2) +gla+y—2) +g9(z—y+2z)+gle—y—2)

—2[g(z+y)+ 9@ —y)+9(y+2) + 9y —2) + 9(x + 2) + g(x — 2)]
—dg(x) —4g(y) — 2[9(2) + g(—2)]

for all z,y, z € P;.
3. Fuzzy Stability Results: Additive Case
In this section, we investigate the stability of (1) in the odd case.

Theorem 3.1. Let a = £1 and g : Py — P> be an odd mapping satisfying the
functional inequality

N (Gu(2,y,2),8) = N' (w(z,y,2),5) (8)

for all z,y,z € Py and s > 0, where w,Q : P? — P3 be a mapping with the
1
conditions

: / ab ab ab ab _
blLI?ON (w (272, 2%y, 27°2) ,2%s) =1 9)
and
N'(Qa(2%),s) > N'(c"Qa (), 5) (10)

for all x,y,z € Py and s > 0, for some ¢ > 0 with 0 < (g) < 1. Then there exists
a unique additive mapping A : P; — Po which satisfies (1) and the inequality

N auls) = A 2 V' (), 2 2) (1)
where Q4 (y) and A(y) are defined by
N’ (QA(y)v S) = min {N/ (OJ (yv Y, y) ) S) ) N’ (w (_ya Y, y) ) S) ) } (12)
and
lim N (A(y) — g“(;b v 5> =1 (13)

for all y € Py and s > 0, respectively.

PRrROOF. Replacing (z,y, 2) by (y,y,y) in (8) and using oddness of g,, we arrive

N (9a(3y) — 69a(2y) + 994(y), 5) > N' (w (y,4,9) . 5) (14)

for all y € Py and s > 0. Setting (z,y, z) by (—y,y,y) in (8) and using oddness of
Ja, We obtain

N <_ga(3y) + 2ga(2y) - ga(y)7 S) > N’ (W (_ya Y, y) ) S) (15>
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for all y € P; and s > 0. It follows from (14), (15) and (F'NS4), we get
N (89a(y) — 494(2y), 25)
= N (9a(3y) — 694(2y) + 99a(y) — 9a(3y) + 29a(2y) — ga(y), s + )
> min { N (gu(3y) — 60a(29) +99a(y).5) s N (=9a(3y) +204(2y) = 9a(1). 5) |
> min {N"(w (y,4,4), ), N (w(=y,5.9),8)} = N (2 (y) , ) (16)
for all y € Py and s > 0. Using (FNS3) in (16), we have

N (#B 0).}) 2 N @) (17

4
for all y € P; and s > 0. Replacing y by 2%y in (17), we obtain

" 2b+1 s )
N (#E0 a@.5) 2 8 (@ (2) ) (18)
for all y € Py and s > 0. Using (10), (FNS3) in (18), we arrive
9.(2""1y) by S : s
Ja\r I 2) > il
v (#E a0.) 2 v (240, 5) (19)

for all y € Py and s > 0. With the help of (FFNS3) it follows from (19), that

9.(2"My)  ga(2y) s s
N ( 2(b+1) - 9b ) 4. 2b Z N, (QA (y) 3 E) (2())

for all y € P, and s > 0. Changing s by ’s in (20), we get

9.(2"y)  ga(2%y) s rcnNd
N ( é(bJrl) ) - (2b )7 Z ' (2_> Z N/ (QA (y) ’ S) (21>
for all y € Py and s > 0. It is easy to see that
b—1
(2b 2d+1 ga(2dy>
9b Z 2(d+1 9d (22)
=0

for all y € P;. From equations (21) and (22), we have

N (ga<22bby> IATER'S (2£)d>

b-1 d+1 d
: 9a(2y)  9u(2%) s [\
Zman{N( S@ T 9d g <2_>

= N'(Qa(y),s) (23)
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for all y € Py and s > 0. Replacing y by 2°x in (23) and using (10), (FN.S3), and
substituting s by ¢®s, we obtain

b+e € S bt c\¢4
N (gaéfb;)y) B ga<22€ y)’ > Z (2_> ) > N (Q4(y), ) (24)

for all y € Py, s > 0 and e > b > 0. It follows from (24), we find

9a(2"y)  9a(2%) 5
N( I R > N'| Qy (9)7Td (25)
L)

for all y € P; and s > 0. SmceO<t<2andZ< > < 00, the Cauchy

ga(2 y)

criterion for convergence and (F'NS5) implies that { } is a Cauchy sequence

in (P2, N'). Since (P2, N') is a fuzzy Banach space, this sequence converges to some
point A € P,. So one can define the mapping A : P; — Py by

lim N <A(y) _ 9a2) s) =1 (26)

q—o0 20

for all y € Py and all s > 0. Letting e = 0 and b — oo in (25), we get

N (A(y) = ga(y),s) = N’ (QA (1), @)

for all y € P; and all s > 0. To prove A satisfies the (1), replacing (z,y, z) by
(26, 2%y, 2b2) in (10), we obtain

N (DA(z,y,z),s) =N <%g214 (be, 2by72bz) ,s)
>N (w (be, 2by. 2bz) ,2bs) (27)
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for all z,y,z € P; and all s > 0. Now,
NAz+y+2)+Alz+y—2)+Alxe—y+2)+ Alx —y — 2)
—2[Az+y)+Alx —y)+ Aly+2) + Aly — 2) + A(z + 2) + A(x — 2)]
—4A(z) — 4A(y) — 2[A(2) + A(=2)], ),

Zmin{N (A(x+y+z) _ 92 (a:;l—)y—{—z))’%) :
¥ (A sy BT 1)
N<A(x—y+z)  Ga(2 ($2—by+z))’%) ’
(20 —y—2)) s
¥ (Aa -y - By=) 5,
29.(2"( +y)) s
N (—QA(:U +y)+ o ; 1—5> ;
29.(2"(x —y)) s
N <—2.A(£L‘ —y)+ o ; 1—5) ;
N <—2.A(y 1 o) 4 292 SI{ =), 1—2) ,
by —2)) s
N (—2A(y— " 294(2 é@b/ ))’1_5) |
b4 2)) s
N (—2A(x +2) + 294(2 éb - )), B) ;
204(2%(x — 2)) s
N (—ZA(:U z) + o 7E> )
N (—4,4(95) + 49“;3 z) %) N (—4A(y) + 4g“§f v, %) ,
204(2°2) s 204(2°(—2)) s
N (—QA(Z) + — 1—5> N (—2.4(—2) + — 1—5) ;
V(B wlety=o) ey
L0y =) 22 4y) 22— )
20 20 20
20,2y +2)  29.(2°(y —2)  26a(2°(x + 2))
b b b
20,21 —2)  4gu(2'%)  4ga(2%)  20.(2°(2))
2b 20 2b 2b

20u(2°(=2)) s

20 1_5) } (28)
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for all z,y,z € Py and all s > 0. Using (26), (27) and (F'N.S5) in (28), we reach
NAz+y+2)+ Alxr+y—2)+ Al —y+2)+ Az —y — 2)
—2[A(z+y)+ Az —y)+ Aly+2) + Aly — 2) + Az + 2) + Az — 2)]
—4A(z) — 4A(y) — 2[A(2) + A(=2)], )
>min{1,1,1,1,1,1,1,1,1,1,1,1,1,1, N' (w (2’2, 2%y, 2°2) ,2%s) }  (29)
for all z,y,z € Py and s > 0. Approaching b tends to infinity in (29) and applying
(10), we get
NAz+y+2)+Ar+y—2)+Ax—y+2)+ Az —y — 2)
—2[A(z+y) + Az —y) +Aly+2)+ Aly — 2) + A(z + 2) + Az — 2)]
—4A(z) —4A(y) — 2[A(z) + A(—2)],s) =1 (30)
for all z,y,z € P; and s > 0. Using (F'NS2) in (30), we see that

Az +y+z2)+Alr+y—2)+ Ale —y+2) + Alx —y — 2)
=2[Az+y)+ Alx —y) + Aly +2) + Aly — 2) + Az + 2) + A(x — 2)]
+ 4A(z) — 4A(y) + 2 [A(2) + A(—2)]
for all z,y,z € P;. Hence A satisfies the functional equation (1). To prove A(y)

is unique, let A’(y) be another additive functional equation satisfying (1) and (13).
Thus,

N(A(y) = A(y).s) = N (A(2by> _ A2y y

20 2b
> min ¢ N A(2) — 94(2"y) il N A'(2%) . 94(2"y) s
- 28 26 727 20 2 72
/ b 5(2 - C)2b

=N’ (QA (y),S(Q_—C)Qb)

2ch4
for all y € P; and all s > 0. Since

_ ob
lim s(2—1¢)2
go0 204

i v (5240, 200 )

q—00 2cb 4

:OO,

we obtain

for all y € P, and s > 0. Thus
N(A(y) — A'(y),s) =1
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for all y € Py and s > 0, and so A(y) = A'(y). Therefore A(y) — A'(y) is unique.
Hence for a = 1 the theorem holds. Replacing y by % in (16), we arrive

¥ w2 (5).5) 2 (24 (9)) o

for all y € P; and s > 0. The rest of the proof is similar lines to that of case a =1
Hence the theorem holds for the case a = —1. This completes the proof. 0

The following corollary is the immediate consequence of Theorem 3.1 concerning
the stabilities of (1).

Corollary 3.2. Assume q and r be positive numbers. Let g : Py — Py be an
odd mapping satisfying the functional inequality

N (q,s)
N (g (" + yll" + 12]]") . s)
N (Gau(z,y,2),8) = ¢ N(q ||=|["|[ylI"1=]]", s) , (32)

N (g (™ + 1yl + [[2172)  5)
N (gl [ly[1=[1=1]"2, ) ,

forallz,y,z € Py and s > 0. Then there is a unique additive mapping A : P1 — Pa
such that

(N (8¢, 52 —1]),
N’ (24q]ly[|", s|2 = 27]), r#1;

N (A®y) — galy), s) > { N Ballyl]’, s|2 —2°), 3r#1; (33)
N’ (8925:1“9 ”725:13|2_2” )a 1,72, T3 # 1;
N (Sqllyl = sl —28n) S A L

\

for ally € Py and s > 0.

4. Fuzzy Stability Results: Quadratic Case

In this section, we investigate the stability of (1) in quadratic case.

Theorem 4.1. Assume a = +1 and g : P1 — P is an even mapping satisfying
the functional inequality

N (Ghy(w,9,2),) = N' (@ (2,9,2) ,5) (34)

for all z,y,z € Py and s > 0, where w,) : P? — P3 be a mapping with the
conditions

lim N’ (w (2%,2%y,2°°2) ,4%s) = 1 (35)

b—o0

and
N'(Qq (27y),s) > N'(c"Qq (y) , 5) (36)
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for all x,y,z € Py and all s > 0, for some ¢ > 0 with 0 < (421) < 1. Then
there exists a unique quadratic mapping Qs : Py — Py which satisfies (1) and the
imequality

N (g2q(y) — Qa(y), ) = N (94(2y) — 169,4(y) — Qa2(y), 5)

> (900, ) (37)
where Qg (y) and Qa(y) are defined by
N (Qq(y), s) = min {N" (w (y,9,9),5) , N (w (2y,9,9),5), } (38)
and
tim v Q) - 2505 ) —1 39

for all y € Py and s > 0, respectively.

PROOF. Replacing (z,y, z) by (v, y,y) in (34) and using evenness of g,, we arrive

N (94(3y) — 694(2y) +15g4(y),s) > N (w (y,9,¥) ,5) (40)
for all y € Py and all s > 0. It follows from (40) and (FNS3), we get
N (494(3y) — 2494(2y) 4 60g4(y), 45) > N (w (y,9,¥) , 5) (41)

for all y € Py and all s > 0. Setting (x,y, z) by (—y,y,y) in (34) and using evenness
of g,, we obtain

N (g4(4y) +494(2y) — 49,(3y) +494(y), s) = N (w (=9, 9,9) , 5) (42)
for all y € Py and all s > 0. It follows from (41), (42) and (F'NS4), we get
N (g4(4y) — 20g,(2y) + 649,(y), 5s)
= N (4g,(3y) — 249,(2y) + 60g4(y) + 94(4y) + 494(2y) — 494(3y) + 4g4(y), 4s + s)
> min {N (494(3y) — 249,4(2y) + 60g,(y),4s) ,

N (94(4y) +494(2y) — 494(3y) +494(y). ) }
> min {N' (w (¥, y,9).5), N (w(~9,9,9),8)} = N'(Qq (y) . 5) (43)
for all y € P; and s > 0. The above inequality can be rewritten as
N (9q(4y) — 1694(2y) — 4(94(2y) — 1694(y)),55) = N' (Qq (y),s)  (44)
for all y € P, and s > 0. Define a mapping ga, : P1 — P2 by
924(y) = 94(2y) — 16g,(y) (45)
for all y € P;. Using (45) in (44), we have

N (g24(2y) — 4g24(y), 55) = N (Qq (v) , 5) (46)



GENERALIZED ULAM-HYERS STABILITY OF AN ALTERNATE... 23

for all y € Py and s > 0. Using (FNS3) in (46), we have

Goq(2y DS
V(22— g0). %) 2 N (@ (). (47)
for all y € P, and s > 0. The rest of the proof is similar lines to that of Theorem
3.1. 0

The following corollary is the immediate consequence of Theorem 4.1 concerning
the stabilities of (1).

Corollary 4.2. Assume q and r be positive numbers. Let g : Py — Py be an
even mapping satisfying the functional inequality

N (g;5)
N (q (" + [yl + 11=11)  5)

N (Gas(x,y,2),8) = ¢ N g [zl llyl[I=]]", 5) (48)
N (g (Il + [yl +[1=1") ).,

N (gl [ [yl []=]]", ) ,

for all z,y,z € Py and s > 0. Then there exists a unique quadratic mapping
Qy : Py — Py such that

N (924(y) — Q2(y),5) = N (94(2y) — 16g,(y) — Qa2(y), s)
(N’ (8¢,5s]4 — 1),

N'([20 4+ 4 - 2"]q[ly|[", 5s|4 — 27]), r#2;
o ) N[+ - 27gly 5l - 27, 3 A2
N/( 1+2T1 |y“7‘1 +8||y||7“2 "‘8Hy||rd Z?:l 5S|4_2h ) , T1,T2,73 #27

Z?:l T # 2;
(49)

N (4] + 27 Jqly> s, Bsfa — 25Ha )

for ally € Py and s > 0.

5. Fuzzy Stability Results: Quartic Case
In this section, we prove the stability of (1) in quartic case.

Theorem 5.1. Let a = £1 and g : P1 — P be an even mapping satisfying the
functional inequality

N (Gos(.y,2),8) = N'(w(2,y,2) ,5) (50)

for all z,y,z € Py and s > 0, where w,Q : P? — Ps be a mapping with the
conditions
1‘ N/ 2ab 2ab 2(11) 1 ab — 1 1
Jim N7 (w (22, 2%y, 2%2) , 16™s) (51)
and

N'(Qq (2%y) ,5) 2 N'(c"Qq (y) , 5) (52)
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for all x,y,z € Py and s > 0, for some ¢ > 0 with 0 < <§> < 1. Then there exists
a unique quartic mapping Qy : Py — Po which satisfies (1) and the inequality

N (91q(y) — Qa(y), s) = N (94(2y) — 4g,4(y) — Qu(y), s)

> v (990 2= (53

where Qg (y) is defined in (38) such that

lim N <Q4(y) - M, 5) =1 (54)

b—oo 16ab

for ally € Py and s > 0.

PROOF. The inequality (43) can be rewritten as

N (9q(4y) — 494(2y) — 16(gq(2y) — 494(y)),55) = N' (Qq () , 5) (55)

for all y € P; and s > 0. Define a mapping g4, : P1 — P2 by

914(y) = 94(2y) — 4g4(y) (56)
for all y € P;. Using (56) in (55), we have
N (914(2y) — 16g44(y), 55) = N" (g (y) . 5) (57)

for all y € P; and s > 0. Using (FNS3) in (57), we have

V(22 g, 55 ) 2 N (@ (). (58)

for all y € P; and s > 0. The rest of the proof is similar lines to that of Theorem
3.1. OJ

The following corollary is the immediate consequence of Theorem 5.1 concerning
the stabilities of (1).

Corollary 5.2. Assume q and r be positive numbers. Let g : Py — Py be an
even mapping satisfying the functional inequality

N (g, s)
N (g (][ + {1yl + 11217, 5)
N (Gau(z,y,2),8) = ¢ N (g [zl llyl"[]=]]",5), (59)
N (g (™ + 1yl + [[21) , 5)
N (allzl[™ Tyl 1]=[]"%, ) ,
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for all x,y,z € Py and s > 0. Then there exists a unique quartic mapping Qg :
Py — Py such that

N (gag(y) — Qu(y),s) = N (94(2y) — 49,(y) — Qu(v), s)

( N'(32¢,55]16 — 1]),
N'([20 +4 - 27]ql|y||", 5s|16 — 27]) , r#£4;
> ) N'([80 + 16 - 2%7]q||y||?", 5s|16 — 237|) , 3r #£4;
| N6+ 2yl + 32yl + 32yl Y00 Bs|16 — 274]) vy e,y A 4
\ (1 1+ 271]g||y[Zi=7, 5|16 — 25t ) S £ 4
(60)

for ally € Py and s > 0.

6. Fuzzy Stability Results: Quadratic-Quartic Case

In this section, we establish the stability of (1) in quadratic-quartic case.

Theorem 6.1. Assume a = £1 and g : Py — Py is an even mapping satisfying
the functional inequality

N (Gau(x,y,2),8) = N'(w (2,9, 2) ,5) (61)
for all z,y,2 € Py and all s > 0, where w,Q) : P? — P is a mapping with
conditions (35), (36), (51) and (52), for all z,y,z € Py and all s > 0, for some
c >0 with 0 < <E> < i) < 1. Then there exists a unique quadratic mapping

4 16
Qs : P1 — Ps and a unique quartic mapping Q4 : P1 — Py which satisfies (1)

and the inequality
N (9q(y) — Qa(y) — Qu(y), s)

, 30s]4 — ¢| , 30s]|16 — ¢
> v (990, 252 4 v (20 (), S (62)

where Qg (y) and Qs(y) are defined in (38) (39) and (54) for all y € Py and all
s > 0, respectively.

ProoOF. By Theorems 4.1 and 5.1, there exists a unique quadratic mapping
Qs, : P1 — Py and a unique quartic mapping Qy, : P; — Po such that

N an(20) = 164(0) — 02,0092 N (200 2T ey
and
N a2~ 16,(0) — Q) 9) = N (9000, ZBD) o

for all y € Py and s > 0.
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Now it from (63), (64), (FNS3) and (FNS4), one can arrive

N (12g4(y) + @2, (y) — Qu, (y), 25)
> N (94(2y) — 1694(y) — Q2,(y), 5) + N (94(2y) — 494(y) — Lu, (v), )
, osld —c , 2516 — ¢
> v (910 0, ) 4 v (20 (), 20— ) (63
for all y € Py and s > 0. The above inequality (65) can be re-modified as

N (gq(y> + 1—126221(?4) - %th (y), %)

> 8 (900 ZEE ) 4 v (90 0, 2= (60

for all y € P, and s > 0.

Thus, we obtain (62) by defining Qx(y) = T3 Q2,(y) and Qu(y) = 594, (v),
where Qg (y) and Qs(y) are defined in (38) (39) and (54) for all y € P; and all
s > 0, respectively. O

The following corollary is the immediate consequence of Theorem 6.1 concerning
the stabilities of (1).

Corollary 6.2. Assume q and r be positive numbers. Let g : Py — Py be an
even mapping satisfying the functional inequality

N (g, s)
N (g (lzll” + llyll" +1I=1") , 5)

N (Gou(,y,2),8) = 8 N (q [le]["llylI"l[=1]", ), (67)
N (g ([lzl]™ +[lylI™= +112]]%) , 5)

N (gl ][ [yl []=[], ) ,

forallx,y,z € Py and s > 0. Then there is a unique quadratic mapping Qs : P1 —
P and a unique quartic mapping Q4 : P1 — P such that

N (94(y) — Qa2(y) — Qu(y), s)
(N’ (8¢,30s]4 — 1]) + N’ (32¢, 30s]16 — 1),
N'([20 + 4 - 27]q||y||", 30s]4 — 27[)

+N'([20 +4 - 27ql[y|[", 30s[16 — 27]) , r#2,4;
N ([80 + 16 - 2%]q||y|[*", 30|16 — 2%|)
S ) HN([4+4-27]g[|yl]*", 30s]4 — 277) 3r #2,4;

N (16[1+ 271 [lyl " + 32lyl]"* + 32/ [y, 322, 30s]16 — 27

N (41 20yl + 8yl + 8lyll, o, B0s|4 = 277]) e s # 2,4

N (16[1 + 2] gy S, 308]16 — 258 )

N (401 + 20 Jgl [y, B0s4 — 25 S r A 24
(68)
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for ally € Py and s > 0.

7. Fuzzy Stability Results: Additive-Quadratic-Quartic Mixed Case
In this section, we establish the stability of (1).

Theorem 7.1. Assume a = 1 and let g : P1 — Po be a mapping satisfying
the functional inequality

N (Ga(x.y,2),5) = N' (w(,y,2) , 5) (69)

for all x,y,z € Py and all s > 0, where w,Q) : P2 — Ps be a mapping with the
conditions (9), (10), (35), (36), (51) and (52), for all x,y,z € Py and all s > 0,
for some ¢ > 0 with 0 < (g)a < <Z>a < <1_CG ’
additive mapping A : Py — Po, a unique quadratic mapping Qs : P1 — Po and a

unique quartic mapping Q4 : P — Po which satisfies (1) and the inequality
N (g(y) — Ay) — Qa(y) — Qu(y), q5)
2 — 2 _
> 8 (20 D) v (4 22

+ N (QQ (), —308|i_ C‘) + N (QQ (—y), —308|i_ C')

30s|16 — ¢ 30s|16 — ¢
8 (90 0), E= ) v (g (- =) )

where Q4 (y), Qg (y), A(y), Qa(y) and Q4(y) are defined in (12, (38) (13), (39) and
(54) for ally € Py and s > 0, respectively.

) < 1. Then there exists a unique

PROOF. Define a function g,

(y) by 9a () _QQCL(_y>, then it follows that ¢,(0) = 0

and g,(—y) = —g,(y) for all y € P;. Thus

1

N (g;24($7 Y, Z)a 8) =N (5 (9324(1', Y, Z) - g;24(_$a -y, _Z)) 73)

=N (90124(%.% z) — 0124(_$a -y, —2), 25)
Z N (Q;M(x,y,z),s) + N ( ;24(—[[‘, -Y, _Z)7S)
>N (w(z,y,2),8) + N (w(—2x,—y,—2),5) (71)

for all y € P; and s > 0. Using Theorem 3.1 and (71), there exists a unique additive
function A : P; — P5 such that

V) = A9 2 N (2400, 2 D) v (a0 B2 e
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for all y € P; and s > 0. In addition, define a function g.(y) by 9a(¥) + 94(~V)

then it follows that ¢.(0) = 0 and g.(—y) = g.(y) for all y € P;. Thus

9

1

N (Gou(z,y,2),s) =N <_

5 (9224(57 Y,2) + Gea(—2, =, —Z)) 5 5)

( 624 L,Y,% + ge?4( T, —Y, _Z)v 23)
( e24(T, Y, 2 ) +N( coa(—x, =y, —3)73)
>N’( (z,y,2),8) + N'(w (=2, =y, —2) , ) (73)

for all y € P; and s > 0. Using Theorem 6.1 and (73), there exists a unique
quadratic mapping Qs : Py — P and a unique quartic mapping Q4 : P; — Po
such that

16 — 16 —
#8592 ) 4 o (9 (-, 2R (7

for all y € Py and s > 0. Define

9(y) = 90(y) + ge(v) (75)

for all y € Py. Now from (75), (74) and (72), we arrive our result. O

Corollary 7.2. Assume q and r be positive numbers. Let g : Py — Ps be a
mapping satisfying the functional inequality

N (g, s)
N (g (lzl]” + llyll" +1I21") , 5)
N (Gau(x,y,2),5) > 3 N (g [lzl]"lylI"l|=]", ) , (76)
N (g ([lzl]™ + [lylI™= +112]]*) , 5)
N (qllz[|"™[|yl[™2][2]]72, 5) ,

for all x,y,z € Py and s > 0. Then there exists a unique additive mapping A :
P1 —> Po, a unique quadratic mapping Qs : P1 —> P and a unique quartic
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mapping Q4 : Py — Po such that

N (g4(y) — Aly) — Qa2(y) — Qu(y), s)
( N'(8¢,s|2—1|) + N’ (8¢,30s|4 — 1|) + N’ (32, 30|16 — 1|) ,
N' (24qllyl|", 52 — 27])
+N'([20 + 4 - 27]ql[yl|", 30s]4 — 27)
FN'([20 + 4 - 2] ly||", 308]16 — 27) r£1,2,4;
N’ (84|ly|[°", 52 — 2°7|)
+N'([80 + 16 - 27]q]|y|[*", 30s|16 — 237))
EN' (444 - 25)q||y|[Pr, 30s]4 — 2%7)) 3r £ 1,2,4;
N (8¢5 llyll™, 320, s|2 — 27))
N’ (16[1 + 2| [y||™ + 32]Jy[|"2 + 32| |y||™=, >7_, 30s]16 — 27])
N (41 + 27 |yl + 8yl + 8JylI™, Yo7, 30s|4 — 274]) vy 1o,y #£ 1,2, 4
N’ (8qlly[Zta e, sj2 — 25

+N' (16[1 + 27 ]q|ly[ =17, 30s[16 — 2217
N (4[1+ 271]q[y[>=175, 3054 — zz?zmy) , Sl A 2,4;

v

for all y € Py and all s > 0.
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