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Certain dense subalgebras of continuous

vector-valued operator algebras

Abbasali Shokri

Abstract. Let X be a compact metric space with at least two elements, B

be a unital commutative Banach algebra over the scalar field F(= Ror C), and

α ∈ R with 0 < α ≤ 1. Suppose that C(X,B) be the continuous, A(X,B) be

the analytic, and Lipα(X,B) be the α-Lipschitz B-valued operator algebras on

X. In this paper, we prove that the algebras Lipα(X,B) and A(X,B) are dense

in C(X,B) under sup-norm. Also, we study the relationship between elements of

the algebras Lipα(X,B) and A(X,B).

1. Introduction

A function f from a non-empty compact metric space (X, d) into the scalar field

F (= R or C) is called a Lipschitz function if there exists a constant M such that

the following condition hold:

|f(x)− f(y)| ≤Md(x, y), ∀x, y ∈ X.

The space Lip(X) consisting of all Lipschitz functions from X into F has been proved

to be a Banach space, which has a series of interesting and important properties.

Sherbert [7], Cao et al [2], Alimohammadi et al [1], Deville et al [4], Kupavskii et

al [5] studied the Abelian Banach algebra consisting of complex-valued Lipschitz

functions on a compact metric space, called the big and little Lipschitz algebra.

Also Constantini studied the density of the space of continuous functions [3].

Let (X, d) be a compact metric space with at least two elements and (B, ‖ · ‖)
be a unital commutative Banach algebra over the scaler field F(= Ror C). Suppose

that C(X,B) denotes the uniform algebra of all continuous B-valued operators from

X into B with the sup-norm

‖f‖∞ := sup
x∈X
‖f(x)‖ , f ∈ C(X,B).

2010 Mathematics Subject Classification. 47B48; 47C05; 47L05.
Key words and phrases. Dense, Banach algebra, Lipschitz algebra, Vector-valued operator.

28



CERTAIN DENSE SUBALGEBRAS... 29

For each λ ∈ F and f, g ∈ C(X,B) define

(f + g)(x) := f(x) + g(x), (λf)(x) := λf(x), ∀x ∈ X.

It is easy to see that (C(X,B), ‖ · ‖∞) becomes a Banach algebra over F.

For any f : X → B, set

Lαf (x, y) :=
‖f(x)− f(y)‖

dα(x, y)
, ∀x, y ∈ X, x 6= y,

and

Pα(f) := sup
x 6=y

Lαf (x, y),

which is called the Lipschitz constant of f . For 0 < α ≤ 1, define

Lipα(X,B) := {f : X → B : Pα(f) <∞} ,

and for 0 < α < 1, define

lipα(X,B) :=

{
f : X → B : lim

d(x,y)→0
Lαf (x, y) = 0

}
.

The elelemts of Lipα(X,B) and lipα(X,B) are called big and little α−Lipschitz

B-valued operators, respectively. For any f ∈ Lipα(X,B) and α ∈ (0, 1] define

‖f‖α := Pα(f) + ‖f‖∞.

In [8], the certain properties of Banach algebra (Lipα(X,B), ‖ · ‖α) has discussed.

By a multiplicative functional on B wee shall mean a nonzero homomorphism from

B to C. The set of all multiplicative functionals on B is called the spectrum of B;

we denote it by σ(B).

The continuous B-valued operator f in the interior of X is called analytic when

Λof in the interior of X is in the usual sense analytic, where Λ ∈ σ(B). When

B = F, put Λ = I the identity map. We denote the set of such operators with the

symbol A(X,B). So

A(X,B) = {f ∈ C(X,B) : Λof is analytic in the interior of X,Λ ∈ σ(B)}.

In this paper, we prove that the algebras Lipα(X,B) and A(X,B) are dense subal-

gebras of C(X,B) with sup-norm. Also, we study the relationship between elements

of the algebras Lipα(X,B) and A(X,B).

2. Preliminaries

Throughout this paper, let (X, d) be a compact metric space with at least two

elements, (B, ‖.‖) be a unital commutative Banach algebra over the scaler filed F
(= R or C) with unite e, and α ∈ R with 0 < α ≤ 1.

According to the definitions mentioned in the introduction, for any f ∈Lipα(X,B)

we have Pα(f) < +∞. So, for every x, y ∈ X we can write

‖f(x)− f(y)‖ ≤ Pα(f) dα(x, y).
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Then, it is easy to see that f is continuous on X. Thus, f ∈ C(X,B). Therefore,

Lipα(X,B) ⊆ C(X,B).

Remark 2.1. It is obvious that for any x, y ∈ X, we see that d(x, y) ≥ 0. So,

kα := supx,y∈X d
α(x, y) is a positive constant. Now let f ∈lipα(X,B) be arbitrary.

Then limd(x,y)→0 L
α
f (x, y) = 0. Thus for every ε > 0, there is a δ > 0 such that

Lαf (x, y) < ε
kα

whenever 0 < d(x, y) < δ. So, whenever 0 < d(x, y) < δ, we have

‖f(x)− f(y)‖
dα(x, y)

<
ε

kα
⇒ ‖f(x)− f(y)‖ < ε

kα
dα(x, y) < ε.

This shows that f ∈ C(X,B). Therefore, lipα(X,B) ⊆ C(X,B).

Remark 2.2. Let f ∈lipα(X,B) be arbitrary. Then there exists a δ > 0 such

that when d(x, y) < δ, we have ‖f(x) − f(y)‖ ≤ dα(x, y) for each x, y ∈ X, i.e. in

this case Pα(f) < +∞. Also, if put Xδ := {(x, y) ∈ X ×X : d(x, y) ≥ δ}, then Xδ

is a closed subspace of the compact space X ×X and so it is compact. Define

Ff : Xδ → B,

Ff (x, y) :=
f(x)− f(y)

dα(x, y)
.

According to the Remark 2.1, the map Ff is continuous. Then sup(x,y)∈Xδ
‖Ff (x, y)‖ <

+∞. Thus sup(x,y)∈Xδ
Lαf (x, y) < +∞, and so Pα(f) < +∞ for every x, y ∈ X

whenever d(x, y) ≥ δ. Therefore in any case, we have Pα(f) < +∞ on X. So,

f ∈Lipα(X,B). This implies that lipα(X,B) ⊆ Lipα(X,B).

Now, let X = [−1, 1]. The operator f defined by f(x) = x2e on X is a continuous

operator and Lipschitz operator with Lipschitz constant 2, so f ∈ Lipα(X,B) 6= ∅.
Also for every α ∈ (0, 1), and any x, y ∈ X with x 6= y, we have

lim
d(x,y)→0

Lαf (x, y) = lim
d(x,y)→0

‖f(x)− f(y)‖
dα(x, y)

= lim
|x−y|→0

‖x2e− y2e‖
|x− y|α

(‖e‖ = 1)

= lim
|x−y|→0

|x− y|1−α|x+ y| = 0.

Then f ∈ lipα(X,B), and so lipα(X,B) 6= ∅.
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As well as the operator g defined by g(x) = 3
√
x e on X = [−1, 1] is continuous,

and is not Lipschitz, because for x = δ, y = −δ and α = 1, we have

Pα(f) = sup
x 6=y

Lαf (x, y)

= sup
x 6=y

‖f(x)− f(y)‖
dα(x, y)

= sup
x 6=y

∥∥ 3
√
xe− 3

√
ye
∥∥

|x− y|
(‖e‖ = 1)

=

∣∣∣ 3
√
δ − 3
√
−δ

∣∣∣
|δ − (−δ)|

=
2 3
√
δ

2δ

=
1

3
√
δ2
→∞ as δ → 0.

This will work together with Remarks 2.1 and 2.2:

φ 6= lipα(X,B) & Lipα(X,B) & C(X,B).

Theorem 2.3. lipα(X,B) is a closed subalgebra of Lipα(X,B).

Proof. It is obvious that lipα(X,B) is a subalgebra of Lipα(X,B). So it is

enough to prove that lipα(X,B) is closed. Let f be a limit point of lipα(X,B).

Then there is a sequence {fn} ⊂ lipα(X,B) such that fn → f with ‖ · ‖α. So

lim
n→∞

‖fn − f‖α = 0. Let ε > 0. Then there is N ∈ N such that for every n ≥ N we

have ‖fn − fN‖α <
ε

2
. Since fN ∈ lipα(X,B),

lim
d(x,y)→0

‖fN(x)− fN(y)‖
dα(x, y)

= 0, (x, y ∈ X, x 6= y).

So there is δ > 0 such that for every t, s ∈ X with 0 < d(t, s) < δ we have

‖fN(t)− fN(s)‖
dα(t, s)

<
ε

2
.
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Thus for all t, s ∈ X with 0 < d(t, s) < δ and n ≥ N we have

‖f(t)− f(s)‖
dα(t, s)

= lim
n→∞

‖fn(t)− fn(s)‖
dα(t, s)

= lim
n→∞

‖[(fn − fN)(t)− (fn − fN)(s)] + (fN(t)− fN(s))‖
dα(t, s)

≤ lim
n→∞

Pα (fn − fN) +
ε

2

< lim
n→∞

‖fn − fN‖α +
ε

2

<
ε

2
+
ε

2
= ε.

Hence f ∈ lipα(X,B), and this proves that lipα(X,B) is closed. �

When B = F, we write C(X) and Lipα(X) instead of C(X,B) and Lipα(X,B),

respectively.

Lemma 2.4. The algebra Lipα(X) is dense in C(X) with sup-norm.

Proof. See [9]. �

Theorem 2.5. Suppose that

(1) A is a closed subalgebra of C(X).

(2) A is self-adjoint (i.e., f̄ ∈ A, for all f ∈ A, where the bar denotes complex

conjugation.)

(3) A separates points on X.

(4) at every x ∈ X, f(x) 6= 0 for some f ∈ A.

Then A = C(X).

Proof. See [6]. �

Corollary 2.6. By Theorem 2.5, we have A(X) = C(X), i.e., the algebra A(X)

is dense in C(X) with sup-norm, where A(X) is the closure of A(X) and A(X) =

A(X,F).

3. Main Results

In this section, we review the main results of the paper.

Theorem 3.1. The algebra Lipα(X,B) is dense in C(X,B) with sup-norm.

Proof. Let ε > 0 and f ∈ C(X,B) be arbitrary. We show that there exists

h ∈ Lipα(X,B) such that ‖h − f‖∞ < ε. Since f ∈ C(X,B), θ ◦ f ∈ C(X) for all

θ ∈ σ(B). So, by Lemma 2.4, there exists g ∈ Lipα(X) such that ‖g − θ ◦ f‖∞ < ε.

Define

η : C→ B,

η(λ) := λe.



CERTAIN DENSE SUBALGEBRAS... 33

Since g is continuous, η ◦ g is continuous. Also

Pα(η ◦ g) = sup
x 6=y

Lαη◦g(x, y)

= sup
x 6=y

‖(η ◦ g)(x)− (η ◦ g)(y)‖
dα(x, y)

= sup
x 6=y

‖g(x)e− g(y)e‖
dα(x, y)

(‖e‖ = 1)

=Pα(g) <∞.

So η ◦ g ∈ Lipα(X,B). Set h := η ◦ g. Now we show that ‖h− f‖∞ < ε. For all

x ∈ X and all θ ∈ σ(B) we have

|θ (g(x)e− f(x))| = |g(x)− (θ ◦ f)(x)| ≤ ‖g − θ ◦ f‖∞ < ε, (θ(e) = 1).

This implies that

|θ (η(g(x))− f(x))| < ε, x ∈ X.

Therefore

|θ (η ◦ g − f) (x)| < ε, x ∈ X.
Since θ ∈ σ(B) is arbitrary, ‖(η ◦ g − f)(x)‖ < ε, (x ∈ X). Consequently,

‖η ◦ g − f‖∞ < ε or ‖h− f‖∞ < ε. This completes the proof. �

Theorem 3.2. The algebra A(X,B) is dense in C(X,B) with sup-norm.

Proof. Let f ∈ C(X,B) and ε > 0 be arbitrary. We show that there is

g ∈ A(X,B) such that ‖f − g‖∞ < ε. Since f ∈ C(X,B), Λ ◦ f ∈ C(X) for every

Λ ∈ σ(B). By Corollary 2.6, there exists h ∈ A(X) such that ‖Λ ◦ f −h‖∞ < ε. So,

we have

sup
x∈X
|(Λ ◦ f − h)(x)| < ε,

⇒ sup
x∈X
|Λ(f(x))− h(x)| < ε,

⇒ sup
x∈X
|Λ(f(x)− h(x)e)| < ε, (Λ(e) = 1).

Since Λ ∈ σ(B) is arbitrary,

sup
x∈X
‖f(x)− h(x)e‖ < ε,

⇒ sup
x∈X
‖(f − he)(x)‖ < ε,

⇒‖f − he‖∞ < ε.

Take g := he, then it is obvious that g ∈ A(X,B) and ‖f − g‖∞ < ε. �

Corollary 3.3. Each element of A(X,B) can be approximated by elements of

Lipα(X,B) with sup-norm.
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Proof. Let f ∈ A(X,B) be arbitrary. Since f ∈ A(X,B), f ∈ C(X,B). So by

Theorem 3.1, there is g ∈Lipα(X,B) such that ‖f − g‖∞ < ε for every ε > 0. This

completes the proof. �

Corollary 3.4. By using Theorem 3.2, each element of Lipα(X,B) can be ap-

proximated by elements of A(X,B) with sup-norm.

Corollary 3.5. Any continuous operator f ∈ C(X,B) can be approximated by

elements of Lipα(X,B) and A(X,B) with at most difference ε > 0 under sup-norm.

This means that for any f ∈ C(X,B) and ε > 0,

• since Lipα(X,B) is dense in C(X,B) by Theorem 3.1, there exists g in

Lipα(X,B) such that ‖f − g‖∞ < ε
2
,

• since A(X,B) is dense in C(X,B) by Theorem 3.2, there exists h ∈ A(X,B)

such that ‖h− f‖∞ < ε
2
.

Hence

‖h− g‖∞ = ‖(h− f) + (f − g)‖∞
≤ ‖h− f‖∞ + ‖f − g‖∞

<
ε

2
+
ε

2
= ε.
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