Mathematical Analysis and its Contemporary Applications Volume 2, Issue 1, 2020, 28-34 doi: 10.30495/MACA.2020.679855

Certain dense subalgebras of continuous vector-valued operator algebras

Abbasali Shokri

ABSTRACT. Let X be a compact metric space with at least two elements, B be a unital commutative Banach algebra over the scalar field $\mathbb{F}(=\mathbb{R} \text{or } \mathbb{C})$, and $\alpha \in \mathbb{R}$ with $0 < \alpha \leq 1$. Suppose that C(X, B) be the continuous, A(X, B) be the analytic, and $\text{Lip}_{\alpha}(X, B)$ be the α -Lipschitz B-valued operator algebras on X. In this paper, we prove that the algebras $\text{Lip}_{\alpha}(X, B)$ and A(X, B) are dense in C(X, B) under sup-norm. Also, we study the relationship between elements of the algebras $\text{Lip}_{\alpha}(X, B)$ and A(X, B).

1. Introduction

A function f from a non-empty compact metric space (X, d) into the scalar field \mathbb{F} (= \mathbb{R} or \mathbb{C}) is called a Lipschitz function if there exists a constant M such that the following condition hold:

$$|f(x) - f(y)| \le Md(x, y), \qquad \forall x, y \in X.$$

The space $\operatorname{Lip}(X)$ consisting of all Lipschitz functions from X into F has been proved to be a Banach space, which has a series of interesting and important properties. Sherbert [7], Cao et al [2], Alimohammadi et al [1], Deville et al [4], Kupavskii et al [5] studied the Abelian Banach algebra consisting of complex-valued Lipschitz functions on a compact metric space, called the big and little Lipschitz algebra. Also Constantini studied the density of the space of continuous functions [3].

Let (X, d) be a compact metric space with at least two elements and $(B, \|\cdot\|)$ be a unital commutative Banach algebra over the scalar field $\mathbb{F}(=\mathbb{R} \text{or } \mathbb{C})$. Suppose that C(X, B) denotes the uniform algebra of all continuous B-valued operators from X into B with the sup-norm

$$||f||_{\infty} := \sup_{x \in X} ||f(x)||, \qquad f \in C(X, B).$$

2010 Mathematics Subject Classification. 47B48; 47C05; 47L05.

Key words and phrases. Dense, Banach algebra, Lipschitz algebra, Vector-valued operator.

For each $\lambda \in \mathbb{F}$ and $f, g \in C(X, B)$ define

$$(f+g)(x) := f(x) + g(x), \quad (\lambda f)(x) := \lambda f(x), \quad \forall x \in X.$$

It is easy to see that $(C(X, B), \|\cdot\|_{\infty})$ becomes a Banach algebra over \mathbb{F} . For any $f: X \to B$, set

$$L_f^{\alpha}(x,y) := \frac{\|f(x) - f(y)\|}{d^{\alpha}(x,y)}, \qquad \forall x, y \in X, \ x \neq y,$$

and

$$P_{\alpha}(f) := \sup_{x \neq y} L_{f}^{\alpha}(x, y),$$

which is called the Lipschitz constant of f. For $0 < \alpha \leq 1$, define

$$\operatorname{Lip}_{\alpha}(X,B) := \left\{ f : X \to B : P_{\alpha}(f) < \infty \right\},\$$

and for $0 < \alpha < 1$, define

$$\operatorname{lip}_{\alpha}(X,B) := \left\{ f: X \to B : \lim_{d(x,y) \to 0} L_{f}^{\alpha}(x,y) = 0 \right\}.$$

The elelemts of $\operatorname{Lip}_{\alpha}(X, B)$ and $\operatorname{lip}_{\alpha}(X, B)$ are called big and little α -Lipschitz B-valued operators, respectively. For any $f \in \operatorname{Lip}_{\alpha}(X, B)$ and $\alpha \in (0, 1]$ define

$$||f||_{\alpha} := P_{\alpha}(f) + ||f||_{\infty}.$$

In [8], the certain properties of Banach algebra $(\text{Lip}_{\alpha}(X, B), \|\cdot\|_{\alpha})$ has discussed. By a multiplicative functional on B were shall mean a nonzero homomorphism from B to \mathbb{C} . The set of all multiplicative functionals on B is called the *spectrum* of B; we denote it by $\sigma(B)$.

The continuous B-valued operator f in the interior of X is called analytic when Λof in the interior of X is in the usual sense analytic, where $\Lambda \in \sigma(B)$. When $B = \mathbb{F}$, put $\Lambda = I$ the identity map. We denote the set of such operators with the symbol A(X, B). So

 $A(X,B) = \{ f \in C(X,B) : \Lambda of \text{ is analytic in the interior of } X, \Lambda \in \sigma(B) \}.$

In this paper, we prove that the algebras $\operatorname{Lip}_{\alpha}(X, B)$ and A(X, B) are dense subalgebras of C(X, B) with sup-norm. Also, we study the relationship between elements of the algebras $\operatorname{Lip}_{\alpha}(X, B)$ and A(X, B).

2. Preliminaries

Throughout this paper, let (X, d) be a compact metric space with at least two elements, $(B, \|.\|)$ be a unital commutative Banach algebra over the scalar filed \mathbb{F} $(= \mathbb{R} \text{ or } \mathbb{C})$ with unite e, and $\alpha \in \mathbb{R}$ with $0 < \alpha \leq 1$.

According to the definitions mentioned in the introduction, for any $f \in \text{Lip}_{\alpha}(X, B)$ we have $P_{\alpha}(f) < +\infty$. So, for every $x, y \in X$ we can write

$$||f(x) - f(y)|| \le P_{\alpha}(f) \ d^{\alpha}(x, y).$$

ABBASALI SHOKRI

Then, it is easy to see that f is continuous on X. Thus, $f \in C(X, B)$. Therefore, $\operatorname{Lip}_{\alpha}(X, B) \subseteq C(X, B)$.

Remark 2.1. It is obvious that for any $x, y \in X$, we see that $d(x, y) \ge 0$. So, $k_{\alpha} := \sup_{x,y \in X} d^{\alpha}(x, y)$ is a positive constant. Now let $f \in lip_{\alpha}(X, B)$ be arbitrary. Then $\lim_{d(x,y)\to 0} L_{f}^{\alpha}(x, y) = 0$. Thus for every $\varepsilon > 0$, there is a $\delta > 0$ such that $L_{f}^{\alpha}(x, y) < \frac{\varepsilon}{k_{\alpha}}$ whenever $0 < d(x, y) < \delta$. So, whenever $0 < d(x, y) < \delta$, we have

$$\frac{\|f(x) - f(y)\|}{d^{\alpha}(x, y)} < \frac{\varepsilon}{k_{\alpha}} \quad \Rightarrow \quad \|f(x) - f(y)\| < \frac{\varepsilon}{k_{\alpha}}d^{\alpha}(x, y) < \varepsilon.$$

This shows that $f \in C(X, B)$. Therefore, $\lim_{\alpha} (X, B) \subseteq C(X, B)$.

Remark 2.2. Let $f \in lip_{\alpha}(X, B)$ be arbitrary. Then there exists a $\delta > 0$ such that when $d(x, y) < \delta$, we have $||f(x) - f(y)|| \le d^{\alpha}(x, y)$ for each $x, y \in X$, i.e. in this case $P_{\alpha}(f) < +\infty$. Also, if put $X_{\delta} := \{(x, y) \in X \times X : d(x, y) \ge \delta\}$, then X_{δ} is a closed subspace of the compact space $X \times X$ and so it is compact. Define

$$F_f: X_{\delta} \to B,$$

$$F_f(x, y) := \frac{f(x) - f(y)}{d^{\alpha}(x, y)}.$$

According to the Remark 2.1, the map F_f is continuous. Then $\sup_{(x,y)\in X_\delta} ||F_f(x,y)|| < +\infty$. Thus $\sup_{(x,y)\in X_\delta} L_f^{\alpha}(x,y) < +\infty$, and so $P_{\alpha}(f) < +\infty$ for every $x, y \in X$ whenever $d(x,y) \geq \delta$. Therefore in any case, we have $P_{\alpha}(f) < +\infty$ on X. So, $f \in Lip_{\alpha}(X, B)$. This implies that $\lim_{\alpha \to \infty} (X, B) \subseteq \operatorname{Lip}_{\alpha}(X, B)$.

Now, let X = [-1, 1]. The operator f defined by $f(x) = x^2 e$ on X is a continuous operator and Lipschitz operator with Lipschitz constant 2, so $f \in \text{Lip}_{\alpha}(X, B) \neq \emptyset$. Also for every $\alpha \in (0, 1)$, and any $x, y \in X$ with $x \neq y$, we have

$$\lim_{d(x,y)\to 0} L_f^{\alpha}(x,y) = \lim_{d(x,y)\to 0} \frac{\|f(x) - f(y)\|}{d^{\alpha}(x,y)}$$
$$= \lim_{|x-y|\to 0} \frac{\|x^2 e - y^2 e\|}{|x-y|^{\alpha}} (\|e\| = 1)$$
$$= \lim_{|x-y|\to 0} |x-y|^{1-\alpha} |x+y| = 0.$$

Then $f \in \lim_{\alpha} (X, B)$, and so $\lim_{\alpha} (X, B) \neq \emptyset$.

As well as the operator g defined by $g(x) = \sqrt[3]{x} e$ on X = [-1, 1] is continuous, and is not Lipschitz, because for $x = \delta$, $y = -\delta$ and $\alpha = 1$, we have

$$P_{\alpha}(f) = \sup_{x \neq y} L_{f}^{\alpha}(x, y)$$

$$= \sup_{x \neq y} \frac{\|f(x) - f(y)\|}{d^{\alpha}(x, y)}$$

$$= \sup_{x \neq y} \frac{\left\|\frac{\sqrt[3]{xe} - \sqrt[3]{ye}}{|x - y|}\right\|}{|x - y|} (\|e\| = 1)$$

$$= \frac{\left|\frac{\sqrt[3]{\delta}}{\sqrt[3]{\delta} - \sqrt[3]{-\delta}}\right|}{|\delta - (-\delta)|}$$

$$= \frac{2\sqrt[3]{\delta}}{2\delta}$$

$$= \frac{1}{\sqrt[3]{\delta^{2}}} \to \infty \text{ as } \delta \to 0.$$

This will work together with Remarks 2.1 and 2.2:

 $\phi \neq \operatorname{lip}_{\alpha}(X, B) \subsetneqq \operatorname{Lip}_{\alpha}(X, B) \subsetneqq C(X, B).$

Theorem 2.3. $\lim_{\alpha}(X, B)$ is a closed subalgebra of $\operatorname{Lip}_{\alpha}(X, B)$.

PROOF. It is obvious that $\lim_{\alpha}(X, B)$ is a subalgebra of $\lim_{\alpha}(X, B)$. So it is enough to prove that $\lim_{\alpha}(X, B)$ is closed. Let f be a limit point of $\lim_{\alpha}(X, B)$. Then there is a sequence $\{f_n\} \subset \lim_{\alpha}(X, B)$ such that $f_n \to f$ with $\|\cdot\|_{\alpha}$. So $\lim_{n\to\infty} \|f_n - f\|_{\alpha} = 0$. Let $\epsilon > 0$. Then there is $N \in \mathbb{N}$ such that for every $n \ge N$ we have $\|f_n - f_N\|_{\alpha} < \frac{\epsilon}{2}$. Since $f_N \in \lim_{\alpha}(X, B)$,

$$\lim_{d(x,y)\to 0} \frac{\|f_N(x) - f_N(y)\|}{d^{\alpha}(x,y)} = 0, \quad (x,y \in X, \ x \neq y).$$

So there is $\delta > 0$ such that for every $t, s \in X$ with $0 < d(t, s) < \delta$ we have

$$\frac{\|f_N(t) - f_N(s)\|}{d^{\alpha}(t,s)} < \frac{\epsilon}{2}.$$

ABBASALI SHOKRI

Thus for all $t, s \in X$ with $0 < d(t, s) < \delta$ and $n \ge N$ we have

$$\frac{\|f(t) - f(s)\|}{d^{\alpha}(t,s)} = \lim_{n \to \infty} \frac{\|f_n(t) - f_n(s)\|}{d^{\alpha}(t,s)}$$

$$= \lim_{n \to \infty} \frac{\|[(f_n - f_N)(t) - (f_n - f_N)(s)] + (f_N(t) - f_N(s))\|}{d^{\alpha}(t,s)}$$

$$\leq \lim_{n \to \infty} P_{\alpha} (f_n - f_N) + \frac{\epsilon}{2}$$

$$< \lim_{n \to \infty} \|f_n - f_N\|_{\alpha} + \frac{\epsilon}{2}$$

$$< \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon.$$

Hence $f \in \lim_{\alpha} (X, B)$, and this proves that $\lim_{\alpha} (X, B)$ is closed.

When $B = \mathbb{F}$, we write C(X) and $\operatorname{Lip}_{\alpha}(X)$ instead of C(X, B) and $\operatorname{Lip}_{\alpha}(X, B)$, respectively.

Lemma 2.4. The algebra $\operatorname{Lip}_{\alpha}(X)$ is dense in C(X) with sup-norm.

PROOF. See [9].

Theorem 2.5. Suppose that

- (1) A is a closed subalgebra of C(X).
- (2) A is self-adjoint (i.e., $\overline{f} \in A$, for all $f \in A$, where the bar denotes complex conjugation.)
- (3) A separates points on X.
- (4) at every $x \in X$, $f(x) \neq 0$ for some $f \in A$.

Then A = C(X).

PROOF. See [6].

Corollary 2.6. By Theorem 2.5, we have $\overline{A(X)} = C(X)$, i.e., the algebra A(X) is dense in C(X) with sup-norm, where $\overline{A(X)}$ is the closure of A(X) and $A(X) = A(X, \mathbb{F})$.

3. Main Results

In this section, we review the main results of the paper.

Theorem 3.1. The algebra $\operatorname{Lip}_{\alpha}(X, B)$ is dense in C(X, B) with sup-norm.

PROOF. Let $\epsilon > 0$ and $f \in C(X, B)$ be arbitrary. We show that there exists $h \in \operatorname{Lip}_{\alpha}(X, B)$ such that $||h - f||_{\infty} < \epsilon$. Since $f \in C(X, B)$, $\theta \circ f \in C(X)$ for all $\theta \in \sigma(B)$. So, by Lemma 2.4, there exists $g \in \operatorname{Lip}_{\alpha}(X)$ such that $||g - \theta \circ f||_{\infty} < \epsilon$. Define

$$\eta: \mathbb{C} \to B$$
$$\eta(\lambda) := \lambda e.$$

Since g is continuous, $\eta \circ g$ is continuous. Also

$$\begin{aligned} P_{\alpha}(\eta \circ g) &= \sup_{x \neq y} L^{\alpha}_{\eta \circ g}(x, y) \\ &= \sup_{x \neq y} \frac{\|(\eta \circ g)(x) - (\eta \circ g)(y)\|}{d^{\alpha}(x, y)} \\ &= \sup_{x \neq y} \frac{\|g(x)e - g(y)e\|}{d^{\alpha}(x, y)} \quad (\|e\| = 1) \\ &= P_{\alpha}(g) < \infty. \end{aligned}$$

So $\eta \circ g \in \text{Lip}_{\alpha}(X, B)$. Set $h := \eta \circ g$. Now we show that $||h - f||_{\infty} < \epsilon$. For all $x \in X$ and all $\theta \in \sigma(B)$ we have

$$|\theta \left(g(x)e - f(x)\right)| = |g(x) - (\theta \circ f)(x)| \le ||g - \theta \circ f||_{\infty} < \epsilon, \quad (\theta(e) = 1).$$

This implies that

$$|\theta \left(\eta(g(x)) - f(x)\right)| < \epsilon, \qquad x \in X.$$

Therefore

$$|\theta (\eta \circ g - f) (x)| < \epsilon, \qquad x \in X.$$

Since $\theta \in \sigma(B)$ is arbitrary, $\|(\eta \circ g - f)(x)\| < \epsilon$, $(x \in X)$. Consequently, $\|\eta \circ g - f\|_{\infty} < \epsilon$ or $\|h - f\|_{\infty} < \epsilon$. This completes the proof.

Theorem 3.2. The algebra A(X, B) is dense in C(X, B) with sup-norm.

PROOF. Let $f \in C(X, B)$ and $\varepsilon > 0$ be arbitrary. We show that there is $g \in A(X, B)$ such that $||f - g||_{\infty} < \varepsilon$. Since $f \in C(X, B)$, $\Lambda \circ f \in C(X)$ for every $\Lambda \in \sigma(B)$. By Corollary 2.6, there exists $h \in A(X)$ such that $||\Lambda \circ f - h||_{\infty} < \varepsilon$. So, we have

$$\begin{split} \sup_{x \in X} |(\Lambda \circ f - h)(x)| &< \varepsilon, \\ \Rightarrow \sup_{x \in X} |\Lambda(f(x)) - h(x)| &< \varepsilon, \\ \Rightarrow \sup_{x \in X} |\Lambda(f(x) - h(x)e)| &< \varepsilon, \quad (\Lambda(e) = 1) \end{split}$$

Since $\Lambda \in \sigma(B)$ is arbitrary,

$$\begin{split} \sup_{x \in X} \|f(x) - h(x)e\| &< \varepsilon \\ \Rightarrow \sup_{x \in X} \|(f - he)(x)\| &< \varepsilon, \\ \Rightarrow \|f - he\|_{\infty} &< \varepsilon. \end{split}$$

Take g := he, then it is obvious that $g \in A(X, B)$ and $||f - g||_{\infty} < \varepsilon$.

Corollary 3.3. Each element of A(X, B) can be approximated by elements of $\text{Lip}_{\alpha}(X, B)$ with sup-norm.

ABBASALI SHOKRI

PROOF. Let $f \in A(X, B)$ be arbitrary. Since $f \in A(X, B)$, $f \in C(X, B)$. So by Theorem 3.1, there is $g \in \text{Lip}_{\alpha}(X, B)$ such that $||f - g||_{\infty} < \varepsilon$ for every $\varepsilon > 0$. This completes the proof.

Corollary 3.4. By using Theorem 3.2, each element of $Lip_{\alpha}(X, B)$ can be approximated by elements of A(X, B) with sup-norm.

Corollary 3.5. Any continuous operator $f \in C(X, B)$ can be approximated by elements of $Lip_{\alpha}(X, B)$ and A(X, B) with at most difference $\varepsilon > 0$ under sup-norm. This means that for any $f \in C(X, B)$ and $\varepsilon > 0$,

- since $\operatorname{Lip}_{\alpha}(X, B)$ is dense in C(X, B) by Theorem 3.1, there exists g in $\operatorname{Lip}_{\alpha}(X, B)$ such that $||f g||_{\infty} < \frac{\varepsilon}{2}$,
- since A(X, B) is dense in C(X, B) by Theorem 3.2, there exists $h \in A(X, B)$ such that $||h - f||_{\infty} < \frac{\varepsilon}{2}$.

Hence

$$\begin{split} \|h - g\|_{\infty} &= \|(h - f) + (f - g)\|_{\infty} \\ &\leq \|h - f\|_{\infty} + \|f - g\|_{\infty} \\ &< \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon. \end{split}$$

References

- D. Alimohammadi and S. Daneshmand, Weighted composition operators between Lipschitz algebras of complex-valued bounded functions, Casp. J. Math. Sci., 9(1) (2020), 100-123.
- [2] H. X. Cao, J. H. Zhang and Z. B. Xu, Characterizations and extensions of Lipschitz-α operators, Acta Math. Sin. (Engl. Ser.), 22(3) (2006), 671-678.
- [3] C. Costantini, On the density of the space of continuous and uniformly continuous functions, Topology Appl., 153 (2006), 1056-1078.
- [4] R. Deville and C. Mudarra, Approximation of Lipschitz functions preserving boundary values, J. Optim. Theory Appl., 182 (2019), 885-905.
- [5] A. Kupavskii, J. Pach and G. Tardos, *Controlling Lipschitz functions*, Mathematika, 64 (2018), 898-910.
- [6] W. Rudin, *Functional analysis*, Second edition, Churchill-Brown series, 1991.
- [7] D. R. Sherbert, Banach algebras of Lipschitz functions, Pacific J. Math., 13 (1963), 1387-1399.
- [8] A. Shokri, Second dual space of little α-Lipschitz vector-valued operator algebras, Sahand Commun. Math. Anal., 8 (2017), 33-41.
- [9] N. Weaver, Lipschitz algebras, World Scientific Publishing Co., Inc., River Edge, NJ, 1999.

DEPARTMENT OF MATHEMATICS, AHAR BRANCH, ISLAMIC AZAD UNIVERSITY, AHAR, IRAN. Email address: a-shokri@iau-ahar.ac.ir

34