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A simple method to solve nonlinear

Volterra-Fredholm integro-differential equations

M. Mohamadi∗ and A. Shahmari

Abstract. In this paper, a new simple direct method to solve nonlinear Fredholm-

Volterra integral equations is presented. By using Block-pulse (BP) functions,

their operational matrices and Taylor expansion a nonlinear Fredholm-Volterra

integral equation converts to a nonlinear system. Some numerical examples illus-

trate accuracy and reliability of our solutions. Moreover, the effect of noise shows

our method is stable.

1. Introduction

Integral equations are widely employed in many fields of mathematics and sci-

ences such as physics, engineering, continuum mechanics, potential theory, geo-

physics, electricity and magnetism, antenna synthesis problem, communication the-

ory, mathematical economics, population genetics and radiation, the particle trans-

port of astrophysics and reactor theory, fluid mechanics and so forth. Therefore,

finding an acceptable solution to such equations is necessary. Hence, as to solve in-

tegral equations, researchers have presented different methods among which one can

make mention of analytical numerical and mixed methods. See [1, 2, 3, 4, 5, 6, 7].

In this paper, we consider a nonlinear Fredholm-Volterra integral equation as follows:{
l [u(x)] = f(x) + λ1

∫ b

a
k1(x, t)G(u(t))dt+ λ2

∫ x

a
k2(x, t)H(u(t))dt

u
j
(a) = vi, j = 0, . . . , n− 1.

(1)

where G(t), H(t) are smooth functions and u is unknown function and n is a positive

integer number and λ1, λ2 ∈ R. Moreover, `2 [a, b]) or `2([a, b]× [a, b] . In addition, l

is a linear differential operator as follows:

l [u(x)] = anu
n + an−1u

n−1 + . . .+ a1u
′ + a0u, (2)
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where an ∈ R for i = 0, 1, . . . , n . The following theorem allows us to these functions

in our approximation.

Theorem 1.1. [1] Suppose that H = `2 [a, b] is a Hilbert space with the inner

product that is defined by 〈f, g〉 =
∫ b

a
f(t)g(t)dt and Y = Span {y1, y2, . . . , ym}. Let

f be an arbitrary element in H. Since Y is a finite dimensional and closed subspace,

it is a complete subset of H and so f has the unique best approximation out of Y .

Many researchers studied and discuss the linear Volterra-Fredholm integro- dif-

ferential equations. E. Boabolian, Z. Masouri and S. Hatamazadeh Varmazyar [2]

in 2008 construct new direct method to solve non-linear Volterra-Fredholm integral

and integro-differential equation using operational matrix block-pulse functions. A.

ALJubory [3] in 2010 introduced some approximation method for solving Volterra-

Fredholm integral and integro-differential equation. M. Dadkah, M. Tavassoli Kajanj

and S. Mahdavi [4] in 2010 used numerical solution of nonlinear Volterra-Fredholm

integro-differential equations using Legendre wavelets. M. Rabani and S. H. Ki-

asoltani [5] in 2011 study the solving of non-linear system of Volterra-Fredholm

integro-differential equation by using discrete collocation method. H. D. Gherjalar

and M. Hossein [6] in 2012 solved integral and integro-differential equation by using

B-splines function.

Using a sequence of polynomials or functions is common to solve integro-differential

equations and integral equations. In these methods, integro-differential equations

convert to a system. Solve the system gives us to solution of integro-differential

equation.

In this paper, we use Block-pulse functions and their properties. Then opera-

tional matrices help us to convert integro-differential equation to a nonlinear system.

For nonlinear terms in integro-differential equation we use Taylor expansion. Block-

pulse functions properties caused to have a nonlinear system that can be solved

easily.

2. Block-pulse functions

BP functions are famous functions that many authors used them to solve different

equations.

Definition 2.1. Suppose m is a positive integer number, an m-set of BPFs

defined over [0, T ) as [7]:

φi (t) =

{
1, iT

m
6 t < (i+1)T

m
,

0, otherwise.

where i = 0, 1, . . . ,m− 1 and φi (t) is the ith BPF and consider h =
T

m
.
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In this paper, for convince we consider our interval [0, 1). We denote Φm(t) as

an m-vector as follows.

Φm(t) =
[
φ0(t) φ1(t) . . . φm−1(t)

]T
, t ∈ [0, 1) . (3)

It is easy to see, the BPFs have many properties that most important of them are

disjointness, orthogonality, and completeness [7].

(P1)φi(t).φj(t) =

{
0, i 6= j,

φi(t), i = j.

(P2)

∫ 1

0

φi(t)φj(t)dt = hδij,where δij is the Kroneker delta.

(P3) For every f ∈ `2 [0, 1] when m→∞, Parsevala’s identity holds:

∫ 1

0

f 2(t)dt =
∞∑
i=0

f 2
i ‖φi(t)‖2 ,

where fi = 1
h

∫ 1

0
f(t)φi(t)dt.

(P4) Let V be an m-vector. Then

Φm(t)ΦT
m(t)V = Ṽ Φm(t) (4)

where Ṽ is an m×m diagonal matrix such that Ṽii = Vi, for i = 0, 1, . . . ,m− 1.

(P5) For every m×m matrix B:

ΦT
m(t)BΦm(t) = B̂Φm(t), (5)

where B̂ is an m-vector such that B̂i = Bii, for i = 0, 1, . . . ,m− 1 .

3. BPFs expansion and operational Matrices

Consider f ∈ `2 [0, 1], with respect to BPFs on [0, 1) and we can write

f(t) =
∞∑
i=0

fiφi(t) '
m∑
i=0

fiφi(t) = F TΦm(t) = ΦT
mF, (6)

where F =
[
f0 f1 . . . fm−1

]T
and fi is defined as (P3).

Theorem 1.1 guarantees uniqueness of coefficients. Now, assume k(x, t) ∈ (`2 [0, 1)×
`2 [0, 1)) is a two dimensional function. With respect to BPFs we can write

k(x, t) ' ΦT
mKΦm, (7)
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where Kij = m2
∫ 1

0

∫ 1

0
k(x, t)φi(x)φj(t)dxdt, i, j = 0, 1, . . . ,m− 1.

Here, we obtain operational matrix of dual.

Lemma 3.1. Let m be an integer and Φm(t) defined as (3). Then

∫ 1

0

∫ 1

0

Φm(x)ΦT
m(t)dx = hIm. (8)

Proof. With respect to (P2), the result is obvious. �

Now we compute operational matrix of integration.

Lemma 3.2. Let 0 ≤ x ≤ 1 and Φm(t) defined as (3). Then∫ x

0

Φm(t)dt ' PΦm(x), (9)

where P , the operational matrix of integration, is an m×mupper triangular matrix

and can be presented as P =
h

2


1 2 · · · 2

0 1
. . .

...
...

. . . . . . 2

0 · · · 0 1

 .
Proof. See [7]. �

4. Main idea

We firstly note that if f ∈ `2 [0, 1), then
∫ x

0
f(t)dt = F TPΦm(x). Furthermore,

for derivate of f(x) we have

F ′ = (P−1)
T

(F − F0),

whereF ′ is operational matrix of derivative, F0 is expansion of f(0).

With apply mathematical induction we can write as

F (n) = DnF −DnF0 − · · · −DF (n−1)
0 = DnF −

n−1∑
i=0

D(n−i)F
(i)
0 (10)

where D = (P−1)
T

and F
(i)
0 is is expansion of f i(0) with respect to BPFs. For

linear differential operator operational matrix, it is enough to use above equality for

differential operator terms. Apply (10) for the linear differential operator are shown

in (2), we can write

DnU −
n−1∑
i=0

D(n−i)U
(i)
0 + an−1(D

n−1U −
n−2∑
i=0

D(n−i−1)U
(i)
0 ) + · · ·+ a1D(U − U0) + a0U

= lDU +R,

where R is remaining terms.
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Lemma 4.1. Let f(x), g(x) ∈ `2 [0, 1). Then, relation (3) implies f(x)g(x) =

HTΦm(x), where

H =
[
f0g0 f1g1 · · · fm−1gm−1

]T
, F =

[
f0 f1 · · · fm−1

]T
and

G =
[
g0 g1 · · · gm−1.

]T
As a result, if f(x) ∈ `2 [0, 1), then fn(x) = HTΦm(x), where

H =
[
fn
0 fn

1 · · · fn
m−1
]T
.

Now, if ψ(x) ∈ C∞[0, 1], then ψ(x) has Taylor expansion as follows:

ψ(x) =
∞∑
i=0

aix
i.

Suppose u(x) ∈ `2 [0, 1) is an arbitrary function with respect to (3). We can write

u(x) = UTΦm(x) = ΦT
m(x)U , where U =

[
u0 u1 · · · um−1

]T
. Now

ψ (u(x)) =
∞∑
i=0

aiu
i(x) '

N∑
i=0

aiu
i(x).

With respect to (3), we have ψ (u(x)) = ΨTΦm(x), therefore according to what was

said

Ψj =
N∑
i=0

aiu
i
j(x), j = 0, 1, ...,m− 1.

5. Direct method to solve nonlinear Volterra-Fredholm

integro-differential equation

The results mentioned in previous sections are used to obtain a direct efficient

method to solve nonlinear Volterra-Fredholm integro-differential equation. Consider

the nonlinear Volterra-Fredholm integro-differential equation which are shown in

(1), where u(x) ∈ `2[0, 1) is unknown, k1(x, t), k2(x, t) ∈ `2([0, 1)× [0, 1)) are known

and G(x), H(x) ∈ C∞[0, 1). Moreover, λ1, λ2 are two real parameters. Here, we

approximate Fredholm term, with respect to (5) and (6) as

k1(x, t) = ΦT
m(x)K1Φm(t), G(u(t)) = ΦT

m(t)Gu.

Hence, (7) indicates that∫ 1

0

ΦT
m(x)K1Φm(t)ΦT

m(t)Gudt = hΦT
m(x)K1Gu,

where [Gu]j =
∑N

i=0 aiu
i
j(x), j = 0, 1, ...,m − 1. For the Volterra term we use (5)

and (6), we can write

k2(x, t) = ΦT
m(x)K2Φm(t), H(u(t)) = ΦT

m(t)Hu.
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Now with respect to (3), (6) and (8) we can see∫ x

0

ΦT
m(x)K2Φm(t)ΦT

m(t)Hdt = ΦT
m(x)K2H̃

∫ x

0

Φm(t)dt = ΦT
m(x)K2H̃uPΦm.

Put Hu = K2H̃uP , and so Volterra term has the following matrix form:ΦT
m(x)Ĥu.

The final matrix form of nonlinear Volterra-Fredholm integro-differential equation

is as follows.

`[D]U − λ1hK1Gu − λ2Ĥu = F +R.

We are going to apply our method to some numerical examples. We selected

examples from different references, so our results can be compared with the results

from other methods. Results of examples are shown in related tables. We note that

in tables em,N indicates absolute error of our approximation with respect to m and

N .

Example 5.1. Consider following nonlinear Fredholm-Volterra integral equation

of the second kind with the exact solution u(x) = 1− x.

u(x) =
1

12
(19− 28x− 6 sin 1 sinx− 6x cos 1 sin x+ 6 sin 1 cosx) (11)

+

∫ x

0

sin(x− t) cos(u(t))dt+

∫ 1

0

(1 + u2(t))(x− t)dt

Results are shown in table 1.

x m = 50, N = 10 e50,10 m = 100, N = 10 e100,10 exact solution

0.00 0.990 1.00× 10−2 0.995 5.0× 10−3 1.0

0.1 0.890 1.00× 10−2 0.895 5.0× 10−3 0.9

0.2 0.7899 1.01× 10−2 0.795 5.0× 10−3 0.8

0.3 0.6899 1.01× 10−2 0.695 5.0× 10−3 0.7

0.4 0.5899 1.01× 10−2 0.595 5.0× 10−3 0.6

0.5 0.4899 1.01× 10−2 0.495 5.0× 10−3 0.5

0.6 0.3899 1.01× 10−2 0.395 5.0× 10−3 0.4

0.7 0.2899 1.01× 10−2 0.295 5.0× 10−3 0.3

0.8 0.1899 1.01× 10−2 0.195 5.0× 10−3 0.2

0.9 0.0899 1.01× 10−2 0.095 5.0× 10−3 0.1

Table 1: Results of example 1

Example 5.2. Suppose u(x) = x be the exact solution of the following nonlinear

Fredholm-Volterra integral equation of the first kind:

1

5
(sinx− 2 cosx+ 2e2x) +

1

2
ex(1− e−1(cos 1 + sin 1)) =

∫ x

0

cos(x− t)e2u(t)dt

+

∫ 1

0

ex−t sinu(t)dt.
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Table 2 shows our results.

x m = 50, N = 10 e50,10 m = 100, N = 10 e100,10 exactsolution

0.00 0.0076 7.60× 10−3 0.0039 3.9× 10−3 0.0

0.1 0.112 1.12× 10−2 0.1041 4.1× 10−3 0.1

0.2 0.2084 8.4× 10−3 0.2043 4.3× 10−3 0.2

0.3 0.3113 1.13× 10−2 0.3044 4.4× 10−3 0.3

0.4 0.4089 8.90× 10−3 0.4045 4.5× 10−3 0.4

0.5 0.5108 1.08× 10−2 0.5046 4.6× 10−3 0.5

0.6 0.6093 9.3× 10−3 0.6047 4.7× 10−3 0.6

0.7 0.7106 1.06× 10−2 0.7047 4.7× 10−3 0.7

0.8 0.8095 9.5× 10−3 0.8048 4.8× 10−3 0.8

0.9 0.9103 1.03× 10−2 0.9048 4.8× 10−3 0.9

Table 2: Results of example 2

Example 5.3. Consider following equation with the exact solution u(x) = x2−1:

u(3)(x) + u′(x) =
−x5

5
+

2x3

3
+

5x2

6
− 113

105
x− 1 +

∫ x

0

u2(t)dt+

∫ 1

0

xt(x+ t)u2(t)dt

With the initial conditions: u(0) = −1, u′(0) = 0, u′′(0) = 2.

Table 3 shows our results.

x m = 50, N = 10 e50,10 m = 100, N = 10 e100,10 exactsolution

0.00 −0.9998 2.00× 10−4 −1.00 0 −1

0.1 −0.9878 2.20× 10−3 −0.989 1.0× 10−3 −0.99

0.2 −0.9858 4.2× 10−3 −0.958 2.0× 10−3 −0.96

0.3 −0.9038 6.20× 10−3 −0.907 3.0× 10−3 −0.91

0.4 −0.8318 8.20× 10−3 −0.836 4.0× 10−3 −0.84

0.5 −0.7398 1.02× 10−2 −0.745 5.0× 10−3 −0.75

0.6 −0.6278 1.22× 10−2 −0.634 6.0× 10−3 −0.64

0.7 −0.4958 1.42× 10−2 −0.503 7.0× 10−3 −0.51

0.8 −0.3438 1.62× 10−2 −0.352 8.0× 10−3 −0.36

0.9 −0.1718 1.82× 10−2 −0.181 9.0× 10−3 −0.19

Table 3: Results of example 3
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