Mathematical Analysis and its Contemporary Applications Volume 1, Issue 1, 2019, pp. 1-43 doi: 10.30495/MACA.2019.679849

Non-stabilities of mixed type Euler-Lagrange k-cubic-quartic functional equation in various normed spaces

J. M. Rassias, M. Arunkumar*, and E. Sathya

ABSTRACT. In this paper, we introduce and examine the generalized Ulam-Hyers stability of fixed Euler-Lagrange k-Cubic-Quartic functional Equation

$$\begin{aligned} f(x+ky) + f(kx+y) + f(x-ky) + f(y-kx) \\ &= k^2 \left[2f(x+y) + f(x-y) + f(y-x) \right] + 2(k^4-1)[f(x)+f(y)] \\ &+ \frac{k^2}{4}(k^2-1)[f(2x)+f(2y)] \end{aligned}$$

where k is a real number with $k \neq 0, \pm 1$ in various Banach spaces with the help of two different methods.

1. Introduction

A fundamental question in the theory of functional equations is as follows: When is it true that a function that approximately satisfies a functional equation must be close to an exact solution of the equation?

If the problem allows a solution, we say that the equation is stable. The first stability problem concerning of group homomorphisms was introduced by Ulam [62] in 1940. The famous Ulam stability problem was partially solved by Hyers [34] for the linear functional equation of Banach spaces. Hyers theorem was generalized by Aoki [2] for additive mappings and by Rassias [56], [49] for linear mappings by considering an unbounded Cauchy difference. A generalization of the Rassias theorem was obtained by Gavruta [30] by replacing the unbounded Cauchy difference by a general control function in the spirit of Rassias approach. The terminology

²⁰¹⁰ Mathematics Subject Classification. Primary: 39B52, 39B72; Secondary:39B82.

Key words and phrases. Cubic functional equation, quartic functional equations, mixed type functional equations, Generalized Hyers-Ulam stability, Banach space, Quasi-Beta Banach space, Fuzzy Banach space.

^{*}Corresponding author.

Hyers-Ulam-Rassias stability originates from these historical backgrounds and this terminology is also applied to the cases of other functional equations.

Cadariu and Radu [24] applied the fixed point method for investigation of the Jensen functional equation. They could present a short and a simple proof (different from the direct method initiated by Hyers in 1941) for the generalized Hyers-Ulam stability of the Jensen functional equation, quadratic functional equation [25] and additive functional equation [26]. Their methods are a powerful tool for studying the stability of several functional equations.

During the last decades, the stability problems of several functional equations have been extensively investigated by a number of authors (c.f. [3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 20, 21, 22, 23, 29, 32, 36, 45, 47, 48, 52, 53, 54, 55, 64, 65, 66]) and references therein.

The solution and stability of following cubic-quartic functional equations

$$f(x + kx) + f(x - ky)$$

$$= k^{2} \{ f(x + y) + f(x - y) \} - 2(k^{2} - 1)f(x) - 2k^{2}(k^{2} - 1)f(y)$$

$$+ \frac{k^{2}(k^{2} - 1)}{4}f(2y); k \neq 0, \pm 1,$$

$$f(x + 2y) + f(x - 2y) = 4(f(x + y) + f(x - y)) - 24f(y) - 6f(x) + 3f(2y)$$
and
$$f(x + y) + f(x - y) = 4(f(x + y) + f(x - y)) - 24f(y) - 6f(x) + 3f(2y)$$

$$f(2x + y) + f(2x - y)$$

= $3f(x + y) + f(-x - y) + 3f(x - y) + f(y - x)$
+ $18f(x) + 6f(-x) - 3f(y) - 3f(-y)$

were introduced and investigated by [21, 31, 46]

In this paper, we introduce and examine the generalized Ulam-Hyers stability of Mixed Euler-Lagrange k-Cubic-Quartic functional Equation

$$f(x+ky) + f(kx+y) + f(x-ky) + f(y-kx)$$

= $k^2 [2f(x+y) + f(x-y) + f(y-x)] - 2(k^4 - 1)[f(x) + f(y)]$
+ $\frac{k^2}{4}(k^2 - 1)[f(2x) + f(2y)]$ (1)

where k is a real number with $k \neq 0, \pm 1$ in various Banach spaces with the help of two different methods.

2. Solution of the functional equation

In this section, we provide the solution of the functional equation (1) by considering A and B are real vector spaces.

Theorem 2.1. Let an odd $f : A \longrightarrow B$ be a mapping satisfying (1), for all $x, y \in A$, then f is cubic.

PROOF. Changing (x, y) by (0, 0) in (1), we arrive f(0) = 0. Replacing y by 0 in (1), we get

$$f(x) + f(kx) + f(x) + f(-kx) = k^{2} \left[2f(x) + f(x) + f(-x) \right] - 2(k^{4} - 1)f(x) + \frac{k^{2}}{4}(k^{2} - 1)f(2x)$$
(2)

for all $x \in A$. Using oddness of f in (2), we obtain

$$2f(x) = 2k^2 f(x) - 2(k^4 - 1)f(x) + \frac{k^2}{4}(k^2 - 1)f(2x)$$
(3)

for all $x \in A$. It follows from (3) that

$$\frac{k^2}{4}(k^2 - 1)f(2x) = \left(2 - 2k^2 + 2(k^4 - 1)\right)f(x);$$

or

$$\frac{k^2}{4}(k^2 - 1)f(2x) = \left(-2k^2 + 2k^4\right)f(x);$$

or

$$k^{2}(k^{2}-1)f(2x) = 2^{3}k^{2}(k^{2}-1)f(x)$$
(4)

for all $x \in A$. Since $k \neq 0, \pm 1$, the above equation yields

$$f(2x) = 2^3 f(x) \tag{5}$$

for all $x \in A$. Hence f is cubic.

Theorem 2.2. Assume that $f : A \longrightarrow B$ is an even mapping satisfying (1), for all $x, y \in A$, then f is quartic.

PROOF. Changing (x, y) by (0, 0) in (1), we arrive f(0) = 0. Replacing y by 0 in in (1), we get

$$f(x) + f(kx) + f(x) + f(-kx) = k^{2} \left[2f(x) + f(x) + f(-x) \right] - 2(k^{4} - 1)f(x) + \frac{k^{2}}{4}(k^{2} - 1)f(2x)$$
(6)

for all $x \in A$. Using evenness of f in (6), we obtain

$$2f(x) + 2f(kx) = 4k^2 f(x) - 2(k^4 - 1)f(x) + \frac{k^2}{4}(k^2 - 1)f(2x)$$
(7)

for all $x \in A$. Using $f(2x) = 2^4 f(x)$ in (7), we have

$$2f(x) + 2f(kx) = 4k^2 f(x) - 2(k^4 - 1)f(x) + 4k^2(k^2 - 1)f(x)$$
(8)

for all $x \in A$. It follows from (4) that

$$2f(kx) = \left(4k^2 - 2(k^4 - 1) + 4k^2(k^2 - 1) - 2\right)f(x)$$

or

$$2f(kx) = 2k^4 f(x) \tag{9}$$

for all $x \in A$. It follows from above equation that

$$f(kx) = k^4 f(x) \tag{10}$$

for all $x \in A$. Hence f is quartic.

Hereafter, throughout this paper let us assume $f: \mathcal{B}_1 \longrightarrow \mathcal{B}_2$ by

$$F_k(x,y) = f(x+ky) + f(kx+y) + f(x-ky) + f(y-kx)$$

- $k^2 [2f(x+y) + f(x-y) + f(y-x)]$
+ $2(k^4 - 1)[f(x) + f(y)] - \frac{k^2}{4}(k^2 - 1)[f(2x) + f(2y)]$

where k is a real number with $k \neq 0, \pm 1$.

All the stability results are proved by Hyers and Radus Method by taking the function f is odd, even and odd-even cases.

3. Stability in Banach space

In this section, we investigate the generalized Ulam - Hyers stability of the functional equation (1) in Banach space. To prove stability results, let us take \mathcal{B}_1 be a normed space and \mathcal{B}_2 be a Banach space.

3.1. Hyers Method.

Theorem 3.1. Let $f : \mathcal{B}_1 \longrightarrow \mathcal{B}_2$ be an odd function fulfilling the inequality

$$||F_k(x,y)|| \le L(x,y)$$
 (11)

for all $x, y \in \mathcal{B}_1$, where $L : \mathcal{B}_1^2 \longrightarrow [0, \infty)$ satisfies the condition

$$\lim_{N \to \infty} \frac{L(2^{NJ}x, 2^{NJ}y)}{2^{3NJ}} = 0$$
(12)

for all $x \in \mathcal{B}_1$. Then there is only one cubic mapping $\mathcal{C}(x) : \mathcal{B}_1 \longrightarrow \mathcal{B}_2$ satisfying the functional equation (1) and

$$\|\mathcal{C}(x) - f(x)\| \le \frac{1}{\lambda} \sum_{M = \frac{1-J}{2}}^{\infty} \frac{L(2^{MJ}x, 0)}{2^{3MJ}}$$
(13)

for all $x \in \mathcal{B}_1$ with $J = \pm 1$ and $\lambda = 2k^2(k^2 - 1)$. The mapping \mathcal{C} is defined by

$$\mathcal{C}(x) = \lim_{N \to \infty} \frac{L(2^{NJ}x)}{2^{3NJ}} \tag{14}$$

for all $x \in \mathcal{B}_1$.

PROOF. Changing y by 0 in (11), we reach

$$\left\| f(x) + f(kx) + f(x) + f(-kx) - k^2 \left[2f(x) + f(x) + f(-x) \right] + 2(k^4 - 1)f(x) - \frac{k^2}{4}(k^2 - 1)f(2x) \right\| \le L(x, 0) \quad (15)$$

for all $x \in \mathcal{B}_1$. Using oddness of f in (15), we obtain

$$\left\| 2f(x) - 2k^2 f(x) + 2(k^4 - 1)f(x) - \frac{k^2}{4}(k^2 - 1)f(2x) \right\| \le L(x, 0); or$$

$$\left\| -\frac{k^2}{4}(k^2 - 1)f(2x) + 2k^2(k^2 - 1)f(x) \right\| \le L(x, 0)$$
(16)

for all $x \in \mathcal{B}_1$. It follows from (16) and $k \neq 0, \pm 1$,

$$\left\|\frac{f(2x)}{2^3} - f(x)\right\| \le \frac{L(x,0)}{2k^2(k^2 - 1)}$$
(17)

for all $x \in \mathcal{B}_1$. Let $\lambda = 2k^2 (k^2 - 1)$ in above inequality, we arrive

$$\left\|\frac{f(2x)}{2^3} - f(x)\right\| \le \frac{L(x,0)}{\lambda} \tag{18}$$

for all $x \in \mathcal{B}_1$. Changing x by 2x and multiplying by $\frac{1}{2^3}$ in (18), we get

$$\left\|\frac{f(2^2x)}{2^6} - \frac{f(2x)}{2^3}\right\| \le \frac{L(2x,0)}{\lambda \cdot 2^3} \tag{19}$$

for all $x \in \mathcal{B}_1$. Using triangle inequality on (18) and (19), we have

$$\left\| \frac{f(2^{2}x)}{2^{6}} - f(x) \right\| = \left\| \frac{f(2^{2}x)}{2^{6}} - \frac{f(2x)}{2^{3}} + \frac{f(2x)}{2^{3}} - f(x) \right\|$$
$$\leq \left\| \frac{f(2x)}{2^{3}} - f(x) \right\| + \left\| \frac{f(2^{2}x)}{2^{6}} - \frac{f(2x)}{2^{3}} \right\|$$
$$\leq \frac{L(x,0)}{\lambda} + \frac{L(2x,0)}{\lambda \cdot 2^{3}} = \frac{1}{\lambda} \left[L(x,0) + \frac{L(2x,0)}{2^{3}} \right]$$
(20)

for all $x \in \mathcal{B}_1$. Generalizing for a positive integer N, we obtain

$$\left\|\frac{f(2^N x)}{2^{3N}} - f(x)\right\| \le \frac{1}{\lambda} \sum_{M=0}^{N-1} \frac{L(2^M x, 0)}{2^{3M}}$$
(21)

for all $x \in \mathcal{B}_1$. Hence $\left\{\frac{f(2^N x)}{2^{3N}}\right\}$ is a Cauchy sequence and it converges to a point $\mathcal{C}(x) \in \mathcal{B}_2$. Indeed, replacing x by $2^P w$ and dividing by 2^{3P} in (21), we get

$$\left\| \frac{f(2^{N+P}x)}{2^{3(N+P)}} - \frac{f(2^{P}x)}{2^{3P}} \right\| = \frac{1}{2^{P}} \left\| \frac{f(2^{N} \cdot 2^{P}x)}{2^{3N}} - f(2^{P}x) \right\|$$
$$\leq \frac{1}{\lambda} \sum_{M=0}^{N-1} \frac{L(2^{M+P}x, 0)}{2^{3(M+P)}}$$
$$\longrightarrow 0 \quad as \quad P \longrightarrow \infty$$
(22)

for all $x \in \mathcal{B}_1$. Thus, we define mapping $\mathcal{C} : \mathcal{B}_1 \longrightarrow \mathcal{B}_2$ by $f(2^N x)$

$$\mathcal{C}(x) = \lim_{N \longrightarrow \infty} \frac{f(2^N x)}{2^{3N}}$$

for all $x \in \mathcal{B}_1$. Letting limit $N \to \infty$ in (21) and using the definition of \mathcal{C} , we get

$$\left\|\lim_{N \to \infty} \frac{f(2^N x)}{2^{3N}} - f(x)\right\| \le \frac{1}{\lambda} \sum_{M=0}^{\infty} \frac{L(2^M x, 0)}{2^{3M}} \Longrightarrow \left\|\mathcal{C}(x) - f(x)\right\| \le \frac{1}{\lambda} \sum_{M=0}^{\infty} \frac{L(2^M x, 0)}{2^{3M}} = \frac{1}{\lambda} \sum_{M=0}^{\infty} \frac{L(2^M x, 0)}{2^{3M}} =$$

for all $x \in \mathcal{B}_1$. Thus (13) holds for J = 1. Now, to show that \mathcal{C} satisfies (1), changing (x, y) by $(2^N x, 2^N y)$ and divided by 2^{3N} in (11), we reach

$$\frac{1}{2^{3N}} \left\| F_k(2^N x, 2^N y) \right\| \le \frac{1}{2^{3N}} L(2^N x, 2^N y)$$

for all $x, y \in \mathcal{B}_1$. Approaching $N \to \infty$ and using the definition of \mathcal{C} , (12) in the above inequality, we can see that \mathcal{C} satisfies the functional equation (1) for all $x \in \mathcal{B}_1$. In order to prove the existence of \mathcal{C} is unique, assume that \mathcal{C}' be another cubic mapping satisfying (1) and (13). Now,

$$\begin{aligned} \|\mathcal{C}(x) - \mathcal{C}'(x)\| &= \frac{1}{2^{3P}} \left\| \mathcal{C}(2^{P}x) - \mathcal{C}'(2^{P}x) \right\| \\ &= \frac{1}{2^{3P}} \left\| \mathcal{C}(2^{P}x) - f(2^{P}x) + f(2^{P}x) - \mathcal{C}'(2^{P}x) \right\| \\ &= \frac{1}{2^{3P}} \left\{ \left\| \mathcal{C}(2^{P}x) - f(2^{P}x) \right\| + \left\| \mathcal{C}'(2^{P}x) - f(2^{P}x) \right\| \right\} \\ &\leq \frac{2}{\lambda} \sum_{M=0}^{\infty} \frac{L(2^{M+P}x, 0)}{2^{3(M+P)}} \\ &\longrightarrow 0 \quad as \quad P \quad \longrightarrow \quad \infty \end{aligned}$$

for all $x \in \mathcal{B}_1$. This proves that $\mathcal{C}(x) = \mathcal{C}'(x)$, for all $x \in \mathcal{B}_1$. Thus, $\mathcal{C}(x)$ is unique. Hence, the theorem holds for J = 1.

Replacing x by $\frac{x}{2}$ in (18), we achieve

$$\left\|f(x) - 2^{3}f\left(\frac{x}{2}\right)\right\| \le \frac{2^{3}L\left(\frac{x}{2}, 0\right)}{\lambda}$$
(23)

for all $x \in \mathcal{B}_1$. Again replacing x by $\frac{x}{2}$ and multiply by 2^3 in (23), we arrive

$$\left\|2^{3}f\left(\frac{x}{2}\right) - 2^{6}f\left(\frac{x}{2^{2}}\right)\right\| \leq \frac{2^{6}L\left(\frac{x}{2^{2}},0\right)}{\lambda} \tag{24}$$

for all $x \in \mathcal{B}_1$. Using triangle inequality on (23) and (24), we have

$$\left\| f(x) - 2^{6} f\left(\frac{x}{2^{2}}\right) \right\| \leq \left\| f(x) - 2^{3} f\left(\frac{x}{2}\right) \right\| + \left\| 2^{3} f\left(\frac{x}{2}\right) - 2^{6} L\left(\frac{x}{2^{2}}\right) \right\|$$
$$\leq \frac{2^{3} L\left(\frac{x}{2},0\right)}{\lambda} + \frac{2^{6} L\left(\frac{x}{2^{2}},0\right)}{\lambda}$$
$$= \frac{1}{\lambda} \left[2^{3} L\left(\frac{x}{2},0\right) + 2^{6} L\left(\frac{x}{2^{2}},0\right) \right]$$
(25)

for all $x \in \mathcal{B}_1$. Generalizing for a positive integer N, we obtain

$$\left\| f(x) - 2^{3N} f\left(\frac{x}{2^N}\right) \right\| \le \frac{1}{\lambda} \sum_{M=1}^{N-1} 2^M L\left(\frac{x}{2^M}, 0\right) = \frac{1}{\lambda} \sum_{M=1}^{N-1} 2^M L\left(\frac{x}{2^M}, 0\right)$$
(26)

for all $x \in \mathcal{B}_1$. The rest of the proof is similar ideas to that of case J = 1. Thus the theorem is true for J = -1. Hence the proof is complete.

The following corollary is an immediate consequence of Theorem 3.1 concerning the stabilities of (1).

Corollary 3.2. Assume that S and R are positive numbers. Let $f : \mathcal{B}_1 \longrightarrow \mathcal{B}_2$ be an odd function fulfilling the inequality

$$||F_k(x,y)|| \le \begin{cases} S; \\ S(||x||^R + ||y||^R); & R \neq 3 \\ S(||x||^R ||y||^R + ||x||^{2R} + ||y||^{2R}); & 2R \neq 3 \end{cases}$$
(27)

for all $x \in \mathcal{B}_1$. Then there is only one cubic mapping $\mathcal{C} : \mathcal{B}_1 \longrightarrow \mathcal{B}_2$ satisfying the functional equation (1) and

$$\|\mathcal{C}(x) - f(x)\| \leq \begin{cases} \frac{S}{\lambda|2^3 - 1|};\\ \frac{S||x||^R}{\lambda|2^3 - 2^R|};\\ \frac{S||x||^{2R}}{\lambda|2^3 - 2^{2R}|}; \end{cases}$$
(28)

for all $x \in \mathcal{B}_1$.

The following example is to illustrate that the functional equation (1) is not stable for R = 3 in Corollary 3.2.

Example 3.1. Let $L : \mathbb{R} \to \mathbb{R}$ be a function defined by

$$L(x) = \begin{cases} Tx^3, & \text{if } |x| < 1\\ T, & \text{otherwise} \end{cases}$$

where T > 0 is a constant, and define a function $f : \mathbb{R} \to \mathbb{R}$ by

$$f(x) = \sum_{M=0}^{\infty} \frac{L(2^M x)}{8^M} \quad \text{for all} \quad x \in \mathbb{R}.$$

Then f satisfies the functional inequality

$$f(x+ky) + f(kx+y) + f(x-ky) + f(y-kx) - k^{2} \left[2f(x+y) + f(x-y) + f(y-x)\right] + 2(k^{4}-1)[f(x) + f(y)] - \frac{k^{2}}{4}(k^{2}-1)[f(2x) + f(2y)] \right] \leq \frac{4T \times 8^{2}(9k^{4}-5k^{2})}{7} \left(|x|^{3}+|y|^{3}\right)$$
(29)

for all $x, y \in \mathbb{R}$. Then there are not a cubic mapping such as $\mathcal{C} : \mathbb{R} \to \mathbb{R}$ and a constant B > 0 such that

$$|f(x) - \mathcal{C}(x)| \le B|x|^3$$
 for all $x \in \mathbb{R}$. (30)

PROOF. From the definition of f(x), we have

$$|f(x)| \le \sum_{M=0}^{\infty} \frac{|L(2^M x)|}{|8^M|} = \sum_{n=0}^{\infty} \frac{T}{8^M} = \frac{8T}{7}.$$

Thus, f is bounded. Now, we are going to prove that f satisfies (29).

If x = y = 0 then (29) is trivial. If $|x|^3 + |y|^3 \ge \frac{1}{8}$, then the left hand side of (29) is less than $\frac{4T(9k^4 - 5k^2)}{7}$. Now suppose that $0 < |x|^3 + |y|^3 < \frac{1}{8}$. Then there is a positive integer b such that

$$\frac{1}{8^{b+2}} \le |x|^3 + |y|^3 < \frac{1}{8^{b+1}},\tag{31}$$

so that $8^{b}|x|^{3} < \frac{1}{8}$, $8^{b}|y|^{3} < \frac{1}{8}$, and consequently $2^{b-1}(x+ky), 2^{b-1}(kx+y), 2^{b-1}(x-ky), 2^{b-1}(y-kx), 2^{b-1}(x+y),$ $2^{b-1}(x-y), 2^{b-1}(y-x), 2^{b-1}(x), 2^{b-1}(y), 2^{b-1}(2x), 2^{b-1}(2y) \in (-1,1).$

Therefore for each M = 0, 1, ..., b - 1, we have $2^{M}(x + ky), 2^{M}(kx + y), 2^{M}(x - ky), 2^{M}(y - kx), 2^{M}(x + y), 2^{M}(x - y)2^{M}(y - x),$ $2^{M}(x), 2^{M}(y), 2^{M}(2x), 2^{M}(2y) \in (-1, 1).$

and

$$L(2^{M}(x+ky)) + L(2^{M}(kx+y)) + L(2^{M}(x-ky)) + L(2^{M}(y-kx)) - k^{2} [2L(2^{M}(x+y)) + L(2^{M}(x-y)) + L(2^{M}(y-x))] + 2(k^{4}-1))[L(2^{M}(x)) + L(2^{M}(y))] - \frac{k^{2}}{4}(k^{2}-1)[L(2^{M}(2x)) + L(2^{M}(2y))] = 0$$

for
$$M = 0, 1, \dots, k - 1$$
. From the definition of f and (31), we obtain that

$$\begin{aligned} &\left| f(x + ky) + f(kx + y) + f(x - ky) + f(y - kx) - k^2 \left[2f(x + y) + f(x - y) + f(y - x) \right] \right| \\ &+ 2(k^4 - 1)[f(x) + f(y)] - \frac{k^2}{4}(k^2 - 1)[f(2x) + f(2y)] \right| \\ &\leq \sum_{M=0}^{\infty} \frac{1}{8^M} \Big| L(2^M(x + ky)) + L(2^M(kx + y)) + L(2^M(x - ky)) + L(2^M(y - kx)) \\ &- k^2 \left[2L(2^M(x + y)) + L(2^M(x - y)) + L(2^M(y - x)) \right] \\ &+ 2(k^4 - 1))[L(2^M(x)) + L(2^M(y))] - \frac{k^2}{4}(k^2 - 1)[L(2^M(2x)) + L(2^M(2y))] \Big| \\ &\leq \sum_{M=k}^{\infty} \frac{1}{8^M} \Big| L(2^M(x + ky)) + L(2^M(kx + y)) + L(2^M(x - ky)) + L(2^M(y - kx)) \\ &- k^2 \left[2L(2^M(x + y)) + L(2^M(x - y)) + L(2^M(y - x)) \right] \\ &+ 2(k^4 - 1))[L(2^M(x)) + L(2^M(y))] - \frac{k^2}{4}(k^2 - 1)[L(2^M(2x)) + L(2^M(2y))] \Big| \\ &\leq \sum_{M=k}^{\infty} \frac{1}{8^M} \cdot \frac{9k^4 - 5k^2}{2} = \frac{8}{7} \cdot \frac{9k^4 - 5k^2}{2} \cdot \frac{1}{8^b} = \frac{4T \times 8^2(9k^4 - 5k^2)}{7} \left(|x|^3 + |y|^3 \right). \end{aligned}$$

Thus f satisfies (29) for all $x, y \in \mathbb{R}$ with $0 < |x|^3 + |y|^3 < \frac{1}{8}$.

We claim that the cubic functional equation (1) is not stable for R = 3 in Corollary 3.2. Suppose on the contrary that there exist a cubic mapping $\mathcal{C} : \mathbb{R} \to \mathbb{R}$ and a constant B > 0 satisfying (30). Since f is bounded and continuous for all $x \in \mathbb{R}, \mathcal{C}$ is bounded on any open interval containing the origin and continuous at the origin. In view of Theorem 3.1, \mathcal{C} must have the form $\mathcal{C}(x) = cx^3$ for any x in \mathbb{R} . Thus, we obtain that

$$|f(x)| \le (B + |c|) |x|^3.$$
(32)

But we can choose a positive integer q with qT > B + |c|.

If $x \in \left(0, \frac{1}{2^{q-1}}\right)$, then $2^M x \in (0, 1)$ for all $M = 0, 1, \dots, q-1$. For this x, we get

$$f(x) = \sum_{M=0}^{\infty} \frac{L(2^M x)}{8^M} \ge \sum_{M=0}^{q-1} \frac{T(2^M x)^3}{8^M} = qTx^3 > (B + |c|)x^3$$

which contradicts (32). Therefore the cubic functional equation (1) is not stable in sense of Ulam, Hyers and Rassias if R = 3, assumed in the inequality (28).

Theorem 3.3. Let $f : \mathcal{B}_1 \longrightarrow \mathcal{B}_2$ be an even function fulfilling the inequality

$$\|F_k(x,y)\| \le L(x,y) \tag{33}$$

for all $x, y \in \mathcal{B}_1$, where $L : \mathcal{B}_1^2 \longrightarrow [0, \infty)$ satisfies the condition

$$\lim_{N \to \infty} \frac{L(k^{NJ}x, k^{NJ}y)}{k^{4NJ}} = 0$$
(34)

for all $x \in \mathcal{B}_1$. Then there is only one quartic mapping $\mathcal{Q} : \mathcal{B}_1 \longrightarrow \mathcal{B}_2$ satisfying the functional equation (1) and

$$\|\mathcal{Q}(x) - f(x)\| \le \frac{1}{2k^4} \sum_{M = \frac{1-J}{2}}^{\infty} \frac{L(k^{MJ}x, 0)}{k^{4MJ}}$$
(35)

for all $x \in \mathcal{B}_1$ with $J = \pm 1$. The mapping \mathcal{Q} is defined by

$$\mathcal{Q}(x) = \lim_{N \to \infty} \frac{L(k^{NJ}x)}{k^{4NJ}}$$
(36)

for all $x \in \mathcal{B}_1$.

PROOF. Changing y by 0 in (33), we reach

$$\left\| f(x) + f(kx) + f(x) + f(-kx) - k^2 \left[2f(x) + f(x) + f(-x) \right] + 2(k^4 - 1)f(x) - \frac{k^2}{4}(k^2 - 1)f(2x) \right\| \le L(x, 0) \quad (37)$$

for all $x \in \mathcal{B}_1$. Using evenness of f and $f(2x) = 2^4 f(x)$ in (37), we obtain

$$\begin{aligned} \left\| 2f(kx) + 2f(x) - 4k^2f(x) + 2(k^4 - 1)f(x) - \frac{k^2}{4}(k^2 - 1)f(2x) \right\| &\leq L(x, 0), \\ \left\| 2f(kx) + 2f(x) - 4k^2f(x) + 2(k^4 - 1)f(x) - 4k^2(k^2 - 1)f(x) \right\| &\leq L(x, 0), \\ \left\| 2f(kx) - 2k^4f(x) \right\| &\leq L(x, 0), \end{aligned}$$

$$(38)$$

for all $x \in \mathcal{B}_1$. It follows from (38) and $k \neq 0, \pm 1$,

$$\left\|\frac{f(kx)}{k^4} - f(x)\right\| \le \frac{L(x,0)}{2k^4}$$
(39)

for all $x \in \mathcal{B}_1$. The rest of the proof is similar to that of Theorem 3.1.

The following corollary is the immediate consequence of Theorem 3.3 concerning the stabilities of (1).

Corollary 3.4. Assume that S and R are positive numbers. Let $f : \mathcal{B}_1 \longrightarrow \mathcal{B}_2$ be an even function fulfilling the inequality

$$||F_k(x,y)|| \le \begin{cases} S; \\ S\left(||x||^R + ||y||^R\right); & R \neq 4 \\ S\left(||x||^R||y||^R + ||x||^{2R} + ||y||^{2R}\right); & R \neq 2 \end{cases}$$
(40)

for all $x \in \mathcal{B}_1$. Then there is only one quartic mapping $\mathcal{Q} : \mathcal{B}_1 \longrightarrow \mathcal{B}_2$ satisfying the functional equation (1) and

$$\|\mathcal{Q}(x) - f(x)\| \leq \begin{cases} \frac{S}{2|k^4 - 1|};\\ \frac{S||x||^R}{2|k^4 - k^R|};\\ \frac{S||x||^{2R}}{2|k^4 - k^{2R}|}; \end{cases}$$
(41)

for all $x \in \mathcal{B}_1$.

The following example is to illustrate that the functional equation (1) is not stable for R = 4 in Corollary 3.4.

Example 3.2. Let $L : \mathbb{R} \to \mathbb{R}$ be a function defined by

$$L(x) = \begin{cases} Tx^4, & \text{if } |x| < 1\\ T, & \text{otherwise} \end{cases}$$

where T > 0 is a constant, and define a function $f : \mathbb{R} \to \mathbb{R}$ by

$$f(x) = \sum_{M=0}^{\infty} \frac{L(k^M x)}{k^{4M}}$$
 for all $x \in \mathbb{R}$

Then f satisfies the functional inequality

$$\left| f(x+ky) + f(kx+y) + f(x-ky) + f(y-kx) - k^{2} \left[2f(x+y) + f(x-y) + f(y-x) \right] + 2(k^{4}-1)[f(x) + f(y)] - \frac{k^{2}}{4}(k^{2}-1)[f(2x) + f(2y)] \right|$$

$$\leq \frac{k^{4}T(9k^{4}-5k^{2})}{2(k^{4}-1)} \left(|x|^{4} + |y|^{4} \right)$$
(42)

for all $x, y \in \mathbb{R}$. Then there are not a quartic mapping $\mathcal{Q} : \mathbb{R} \to \mathbb{R}$ and a constant B > 0 such that

$$|f(x) - \mathcal{Q}(x)| \le B|x|^4 \qquad \text{for all} \quad x \in \mathbb{R}.$$
(43)

Theorem 3.5. Let $f : \mathcal{B}_1 \longrightarrow \mathcal{B}_2$ be a function fulfilling the inequality

$$\|F_k(x,y)\| \le L(x,y) \tag{44}$$

for all $x, y \in \mathcal{B}_1$, where $L : \mathcal{B}_1^2 \longrightarrow [0, \infty)$ satisfies the conditions (12) and (34), for all $x \in \mathcal{B}_1$. Then there are only one cubic mapping $\mathcal{C} : \mathcal{B}_1 \longrightarrow \mathcal{B}_2$ and only one quartic mapping $\mathcal{Q}: \mathcal{B}_1 \longrightarrow \mathcal{B}_2$ satisfying the functional equation (1) such that

$$\|f(x) - \mathcal{C}(x) - \mathcal{Q}(x)\| \le \frac{1}{2} \left\{ \frac{1}{\lambda} \sum_{M = \frac{1-J}{2}}^{\infty} \left(\frac{L(2^{MJ}x, 0)}{2^{3MJ}} + \frac{L(-2^{MJ}x, 0)}{2^{3MJ}} \right) + \frac{1}{2k^4} \sum_{M = \frac{1-J}{2}}^{\infty} \left(\frac{L(k^{MJ}x, 0)}{k^{4MJ}} + \frac{L(-k^{MJ}x, 0)}{k^{4MJ}} \right) \right\}$$
(45)

for all $x \in \mathcal{B}_1$ with $J = \pm 1$. The mappings \mathcal{C} and \mathcal{Q} are defined in (14) and (36) respectively, for all $x \in \mathcal{B}_1$.

PROOF. Assume that

$$f_c(x) = \frac{f(x) - f(-x)}{2},$$

for all $x \in \mathcal{B}_1$. It is easy to verify that

$$f_c(0) = 0$$
 and $f_c(-x) = -f_c(x),$

for all $x \in \mathcal{B}_1$. By Theorem 3.1 and definition of f_c , we have

$$\|f_c(x) - \mathcal{C}(x)\| \le \frac{1}{2} \cdot \frac{1}{\lambda} \sum_{M = \frac{1-J}{2}}^{\infty} \left(\frac{L(2^{MJ}x, 0)}{2^{3MJ}} + \frac{L(-2^{MJ}x, 0)}{2^{3MJ}} \right)$$
(46)

for all $x \in \mathcal{B}_1$. Also, assume that

$$f_q(x) = \frac{f(x) + f(-x)}{2},$$

for all $x \in \mathcal{B}_1$. It is easy to verify that

$$f_q(0) = 0$$
 and $f_q(-x) = f_q(x),$

for all $x \in \mathcal{B}_1$. By Theorem 3.3 and definition of f_q , we have

$$\|f_q(x) - \mathcal{Q}(x)\| \le \frac{1}{2} \cdot \frac{1}{2k^4} \sum_{M = \frac{1-J}{2}}^{\infty} \left(\frac{L(k^{MJ}x, 0)}{k^{4MJ}} + \frac{L(-k^{MJ}x, 0)}{k^{4MJ}} \right)$$
(47)

for all $x \in \mathcal{B}_1$. Let us define

$$f(x) = f_c(x) + f_q(x)$$
 (48)

for all $x \in \mathcal{B}_1$. Then by (46), (47) and (48), we arrive our result.

The following corollary is an immediate consequence of Theorem 3.5 concerning the stabilities of (1).

Corollary 3.6. Assume that S and R are positive numbers. Let $f : \mathcal{B}_1 \longrightarrow \mathcal{B}_2$ be a function fulfilling the inequality

$$\|F_k(x,y)\| \le \begin{cases} S; \\ S\left(||x||^R + ||y||^R\right); & R \neq 3,4 \\ S\left(||x||^R ||y||^R + ||x||^{2R} + ||y||^{2R}\right); & 2R \neq 3,4 \end{cases}$$
(49)

for all $x \in \mathcal{B}_1$. Then there are only one cubic mapping $\mathcal{C} : \mathcal{B}_1 \longrightarrow \mathcal{B}_2$ and only one quartic mapping $\mathcal{Q} : \mathcal{B}_1 \longrightarrow \mathcal{B}_2$ such that satisfying the functional equation (1) and

$$\|f(x) - \mathcal{C}(x) - \mathcal{Q}(x)\| \leq \begin{cases} \frac{S}{2} \left(\frac{1}{\lambda |2^{3} - 1|} + \frac{1}{2|k^{4} - 1|} \right); \\ \frac{S||x||^{R}}{2} \left(\frac{1}{\lambda |2^{3} - 2^{R}|} + \frac{1}{2|k^{4} - k^{R}|} \right); \\ \frac{S||x||^{2R}}{2} \left(\frac{1}{\lambda |2^{3} - 2^{2R}|} + \frac{1}{2|k^{4} - k^{2R}|} \right); \end{cases}$$
(50)

for all $x \in \mathcal{B}_1$.

3.2. Radu's method.

Theorem 3.7. Let $f : \mathcal{B}_1 \longrightarrow \mathcal{B}_2$ be an odd function fulfilling the inequality (11) for all $x, y \in \mathcal{B}_1$, where $L : \mathcal{B}_1^2 \longrightarrow [0, \infty)$ with the condition

$$\lim_{N \to \infty} \frac{L(\ell_I^N x, \ell_I^N y)}{\ell_I^{3N}} = 0$$
(51)

where

$$\ell_I = \begin{cases} 2 & if \quad I = 0, \\ \frac{1}{2} & if \quad I = 1 \end{cases}$$
(52)

holds for all $x, y \in \mathcal{B}_1$. Assume that there exists $\mathcal{L} = \mathcal{L}(I)$ such that for the function

$$L(x,0) = \frac{2^3}{\lambda} L\left(\frac{x}{2},0\right)$$

we have the following property

$$\frac{1}{\ell_I^3} L(\ell_I x, 0) = \mathcal{L}L(w, 0), \tag{53}$$

for all $x \in \mathcal{B}_1$. Then there is only one cubic mapping $\mathcal{C} : \mathcal{B}_1 \longrightarrow \mathcal{B}_2$ satisfying the functional equation (1) and

$$\|\mathcal{C}(x) - f(x)\| \le \left(\frac{\mathcal{L}^{1-I}}{1-\mathcal{L}}\right) L(x,0)$$
(54)

for all $x \in \mathcal{B}_1$.

PROOF. Consider the set

$$\mathcal{A} = \{ f/f : \mathcal{B}_1 \longrightarrow \mathcal{B}_2, \ f(0) = 0 \}$$

and introduce the generalized metric $d: \mathcal{A} \times \mathcal{A} \to [0, \infty]$ as follows:

$$d(f,g) = \inf\{\omega \in (0,\infty) : \|f(x) - g(x)\| \le \omega \ L(x,0), x \in \mathcal{B}_1\}.$$
 (55)

It is easy to show that (\mathcal{A}, d) is complete with respect to the defined metric. Let us define the linear mapping $U : \mathcal{A} \longrightarrow \mathcal{A}$ by

$$Uf(x) = \frac{1}{\ell_I^3} f_a(\ell_I x),$$

for all $x \in \mathcal{B}_1$. For given $f, f_a \in \mathcal{A}$ and $d(f, f_a) \in \omega$ that is

$$||f(x) - f_a(x)|| \le \omega \ L(x,0), x \in \mathcal{B}_1.$$

So, we have

$$\|f(x) - f_a(x)\| = \left\| \frac{1}{\ell_I^3} f(\ell_I x) - \frac{1}{\ell_I^3} f_a(\ell_I x) \right\|$$
$$\leq \frac{\omega}{\ell_I^3} L(\ell_I x, 0)$$
$$= \mathcal{L}\omega L(x, 0)$$

for all $x \in \mathcal{B}_1$, that is,

$$d(Uf, Uf_a) \leq \mathcal{L}d(f, f_a), \qquad \forall f, f_a \in \mathcal{A}$$

This implies U is a strictly contractive mapping on \mathcal{A} with Lipschitz constant \mathcal{L} .

For the case I = 0, it follows from (55), (18) and (53), we reach

$$\|Uf(x) - f(x)\| \le \mathcal{L} L(x,0), x \in \mathcal{B}_1.$$
(56)

Hence,

$$d(Uf, f) \le \mathcal{L}^{1-0}, \qquad f \in \mathcal{A}.$$
(57)

For the case I = 1, it follows from (55), (23) and (53), we get

$$\|f(x) - Uf(x)\| \le L(x,0), \qquad x \in \mathcal{B}_1.$$
(58)

Thus, we obtain

$$d(f, Uf) \le \mathcal{L}^{1-1}, \qquad f \in \mathcal{A}.$$
(59)

Hence, from (57) and (59), we arrive

$$d(Uf, f) \le \mathcal{L}^{1-I}, \qquad f \in \mathcal{A}, \tag{60}$$

where I = 0, 1. Hence, property (FP1) holds. It follows from property (FP2) that there exists a fixed point C of U in A such that

$$\mathcal{C}(x) = \lim_{N \to \infty} \frac{1}{\ell_I^{3N}} f(\ell_I^{3N} x)$$
(61)

for all $x \in \mathcal{B}_1$. In order to show that \mathcal{C} satisfies (1), replacing (x, y) by $(\ell_I^N x, \ell_I^N y)$ and dividing by ℓ_I^{3N} in (11), we have

$$\frac{1}{\ell_I^{3N}} \left\| F_k(\ell_I^N x, \ell_I^N y) \right\| \le \frac{1}{2^{3N}} L(\ell_I^N x, \ell_I^N y)$$

for all $x, y \in \mathcal{B}_1$. Approaching $N \to \infty$ and using the definition of \mathcal{C} , (51) in the above inequality, we can see that $\mathcal{C}(x)$ satisfies the functional equation (1) for all $x \in \mathcal{B}_1$. By property (FP3), \mathcal{C} is the unique fixed point of U in the set

$$\Delta = \{ \mathcal{C} \in \mathcal{A} : d(f, \mathcal{C}) < \infty \},\$$

such that

$$||f(x) - \mathcal{C}(x)|| \le \omega L(x, 0), x \in \mathcal{B}_1$$

Finally by property (FP4), we obtain

$$\left\|f(x) - \mathcal{C}(x)\right\| \le \left\|f(x) - Uf(x)\right\|, x \in \mathcal{B}_1$$

This implies

$$\|f(x) - \mathcal{C}(x)\| \le \frac{\mathcal{L}^{1-I}}{1 - \mathcal{L}}$$

which yields

$$\|f(x) - \mathcal{C}(x)\| \le \left(\frac{\mathcal{L}^{1-i}}{1-\mathcal{L}}\right) L(x,0), x \in \mathcal{B}_1.$$

So, the proof is completed.

Using Theorem 3.7, we prove the following corollary concerning the stabilities of (1).

Corollary 3.8. Assume that S and R are positive numbers. Let $f : \mathcal{B}_1 \longrightarrow \mathcal{B}_2$ be an odd function fulfilling the inequality (27), for all $x \in \mathcal{B}_1$. Then there is only one cubic mapping $\mathcal{C} : \mathcal{B}_1 \longrightarrow \mathcal{B}_2$ satisfying the functional equation (1) and

$$\|\mathcal{C}(x) - f(x)\| \leq \begin{cases} \frac{S \ 2^{3}}{\lambda|2^{3} - 1|};\\ \frac{S \ 2^{3}||x||^{R}}{\lambda|2^{3} - 2^{R}|};\\ \frac{S \ 2^{3}||x||^{2R}}{\lambda|2^{3} - 2^{2R}|}; \end{cases}$$
(62)

for all $x \in \mathcal{B}_1$.

PROOF. Let

$$L(x,y) = \begin{cases} S;\\ S(||x||^{R} + ||y||^{R});\\ S(||x||^{R}||y||^{R} + ||x||^{2R} + ||y||^{2R}); \end{cases}$$

for all $x, y \in \mathcal{B}_1$. Now

$$\begin{split} \frac{1}{\ell_I^{3N}} L(\ell_I^N x, \ell_I^N y) &= \begin{cases} \frac{S}{\ell_I^{3N}}, \\ \frac{S}{\ell_I^{3N}} \left\{ ||\ell_I^N x||^R + ||\ell_I^N y||^R \right\}, \\ \frac{S}{\ell_I^{3N}} \left\{ ||\ell_I^N x||^R ||\ell_I^N y||^R + \left\{ ||\ell_I^N x||^{2R} + ||\ell_I^N y||^{2R} \right\} \right\} \\ &= \begin{cases} \to 0 \text{ as } N \to \infty, \\ \to 0 \text{ as } N \to \infty, \\ \to 0 \text{ as } N \to \infty. \end{cases} \end{split}$$

Thus, (51) holds. But, we have

$$L(x,0) = \frac{2^3}{\lambda} L\left(\frac{x}{2},0\right)$$

has the property

$$\frac{1}{\ell_I^3} L(\ell_I x, 0) = \mathcal{L} \ L(x, 0)$$

for all $x \in \mathcal{B}_1$. Hence,

$$L(x,0) = \frac{2^{3}}{\lambda} L\left(\frac{x}{2},0\right) = \begin{cases} \frac{S}{\lambda} \frac{2^{3}}{\lambda}, \\ \frac{S}{2^{3}} \frac{2^{3}}{\lambda} \frac{2^{R}}{2^{3}} ||x||^{R}, \\ \frac{S}{\lambda} \frac{2^{2R}}{2^{3}} ||x||^{2R} \end{cases}$$
(63)

for all $x \in \mathcal{B}_1$. It follows from (63),

$$\frac{1}{\ell_I^3} L(\ell_I x, 0) = \begin{cases} \ell_I^{-3} \frac{S \ 2^3}{\lambda}, \\ \ell_I^{R-3} \frac{S \ 2^3}{\lambda} ||x||^R \\ \ell_I^{2R-3} \frac{S \ 2^3}{\lambda} ||x||^{2R}. \end{cases}$$

Hence, the inequality (83) holds for

(i). $\mathcal{L} = \ell_I^{-3}$ if I = 0 and $\mathcal{L} = \frac{1}{\ell_I^{-3}}$ if I = 1; (ii). $\mathcal{L} = \ell_I^{R-3}$ for R < 3 if I = 0 and $\mathcal{L} = \frac{1}{\ell_I^{R-3}}$ for R > 3 if I = 1; (iii). $\mathcal{L} = \ell_I^{2R-3}$ for 2R > 3 if I = 0 and $\mathcal{L} = \frac{1}{\ell_I^{2R-3}}$ for 2R > 3 if I = 1. Now, from (83), we prove the following cases for condition (i).

$$\begin{split} \mathcal{L} &= \ell_{I}^{-3}, I = 0 & \mathcal{L} = \frac{1}{\ell_{I}^{-3}}, I = 1 \\ \mathcal{L} &= 2^{-3}, I = 0 & \mathcal{L} = \frac{1}{2^{-3}}, I = 1 \\ \mathcal{L} &= 2^{-3}, I = 0 & \mathcal{L} = 2^{3}, I = 1 \\ \parallel f(x) - \mathcal{C}(x) \parallel & \parallel f(x) - \mathcal{C}(x) \parallel \\ &\leq \left(\frac{\mathcal{L}^{1-I}}{1-\mathcal{L}}\right) \mathcal{L}(x, 0) & \leq \left(\frac{\mathcal{L}^{1-I}}{1-\mathcal{L}}\right) \mathcal{L}(x, 0) \\ &= \left(\frac{(2^{-3})^{1-0}}{1-2^{-3}}\right) \cdot \frac{S \ 2^{3}}{\lambda} & = \left(\frac{(2^{3})^{1-1}}{1-2^{3}}\right) \cdot \frac{S \ 2^{3}}{\lambda} \\ &= \left(\frac{S \ 2^{3}}{\lambda(2^{3}-1)}\right) & = \left(\frac{S \ 2^{3}}{\lambda(1-2^{3})}\right) \end{split}$$

Also, from (83), we prove the following cases for condition (ii).

$$\begin{split} \mathcal{L} &= \ell_{I}^{R-3}, R < 3, I = 0 & \mathcal{L} = \frac{1}{\ell_{I}^{R-3}}, R > 3, I = 1 \\ \mathcal{L} &= 2^{R-3}, R < 3, I = 0 & \mathcal{L} = \frac{1}{2^{R-3}}, R > 3, I = 1 \\ \mathcal{L} &= 2^{R-3}, R < 3, I = 0 & \mathcal{L} = 2^{3-R}, R > 3, I = 1 \\ \parallel f(x) - \mathcal{C}(x) \parallel & \parallel f(x) - \mathcal{C}(x) \parallel \\ &\leq \left(\frac{\mathcal{L}^{1-i}}{1-\mathcal{L}}\right) \mathcal{L}(x, 0) & \leq \left(\frac{\mathcal{L}^{1-i}}{1-\mathcal{L}}\right) \mathcal{L}(x, 0) \\ &= \left(\frac{(2^{R-3})^{1-0}}{1-2^{R-3}}\right) \cdot \frac{S \cdot 2^3}{\lambda \cdot 2^R} ||x||^R & = \left(\frac{1}{1-2^{3-R}}\right) \cdot \frac{S \cdot 2^3}{\lambda \cdot 2^R} ||x||^R \\ &= \left(\frac{2^{R}}{2^3-2^R}\right) \cdot \frac{S \cdot 2^3}{\lambda \cdot 2^R} ||x||^R & = \left(\frac{2^R}{2^{R-23}}\right) \cdot \frac{S \cdot 2^3}{\lambda \cdot 2^R} ||x||^R \end{split}$$

Finally, the proof of (83) for condition (iii) is similar to that of condition (ii). Hence the proof is complete.

Theorem 3.9. Let $f : \mathcal{B}_1 \longrightarrow \mathcal{B}_2$ be an even function fulfilling the inequality (33) for all $x, y \in \mathcal{B}_1$, where $L : \mathcal{B}_1^2 \longrightarrow [0, \infty)$ with the condition

$$\lim_{N \to \infty} \frac{L(\ell_I^N x, \ell_I^N y)}{\ell_I^{4N}} = 0$$
(64)

where

$$\ell_I = \begin{cases} k & if \quad I = 0, \\ \frac{1}{k} & if \quad I = 1 \end{cases}$$
(65)

holds for all $x, y \in \mathcal{B}_1$. Assume that there exists $\mathcal{L} = \mathcal{L}(I)$ such that the function

$$L(x,0) = \frac{1}{k}L\left(\frac{x}{k},0\right)$$

with the property

$$\frac{1}{\ell_I^4} L(\ell_I x, 0) = \mathcal{L}L(w, 0) \tag{66}$$

for all $x \in \mathcal{B}_1$. Then there is only one quartic mapping $\mathcal{Q} : \mathcal{B}_1 \longrightarrow \mathcal{B}_2$ satisfying the functional equation (1) and

$$\|\mathcal{Q}(x) - f(x)\| \le \left(\frac{\mathcal{L}^{1-I}}{1-\mathcal{L}}\right) L(x,0) \tag{67}$$

for all $x \in \mathcal{B}_1$.

PROOF. The proof of the theorem is similar to that of Theorem 3.7 by define the linear mapping as $U: \mathcal{A} \longrightarrow \mathcal{A}$ by

$$Uf(x) = \frac{1}{\ell_I^4} f_q(\ell_I x)$$

for all $x \in \mathcal{B}_1$. For given $f, f_q \in \mathcal{A}$

Using Theorem 4.9, we prove the following corollary concerning the stabilities of (1).

Corollary 3.10. Assume that S and R are positive numbers. Let $f : \mathcal{B}_1 \longrightarrow \mathcal{B}_2$ be an even function fulfilling the inequality (40), for all $x \in \mathcal{B}_1$. Then there is only one quartic mapping $\mathcal{Q} : \mathcal{B}_1 \longrightarrow \mathcal{B}_2$ satisfying the functional equation (1) and

$$\|\mathcal{Q}(x) - f(x)\| \leq \begin{cases} \frac{S}{2|k^4 - 1|};\\ \frac{S|x||^R}{2|k^4 - k^R|};\\ \frac{S||x||^{2R}}{2|k^4 - k^{2R}|}; \end{cases}$$
(68)

for all $x \in \mathcal{B}_1$.

PROOF. The proof of the corollary is similar ideas of to that of Corollary 3.8. Hence the details of the proof are omitted. $\hfill \Box$

Theorem 3.11. Let $f : \mathcal{B}_1 \longrightarrow \mathcal{B}_2$ be a function fulfilling the inequality (44), for all $x, y \in \mathcal{B}_1$, where $L : \mathcal{B}_1^2 \longrightarrow [0, \infty)$ satisfies the conditions (51) and (64), where ℓ_I is respectively defined in (52) and (65) that holds for all $x, y \in \mathcal{B}_1$. Assume that there exists $\mathcal{L} = \mathcal{L}(I)$ such that the functions

$$L(x,0) = \frac{1}{2}L\left(\frac{x}{2},0\right) \quad and \quad L(x,0) = \frac{2^3}{\lambda}L\left(\frac{x}{2},0\right)$$

satisfies the properties (53), (66) and

$$\frac{1}{\ell_I^3} L(\ell_I x, 0) = \mathcal{L}L(w, 0) \tag{69}$$

for all $x \in \mathcal{B}_1$. Then there are only one cubic mapping $\mathcal{C} : \mathcal{B}_1 \longrightarrow \mathcal{B}_2$ and only one quartic mapping $\mathcal{Q} : \mathcal{B}_1 \longrightarrow \mathcal{B}_2$ satisfying the functional equation (1) and

$$\|f(x) - \mathcal{C}(x) - \mathcal{Q}(x)\| \le \left(\frac{\mathcal{L}^{1-I}}{1-\mathcal{L}}\right) \left(L(x,0) + L(-x,0)\right) \tag{70}$$

for all $x \in \mathcal{B}_1$.

PROOF. By the definition of $f_c(x)$ and $f_q(x)$ in Theorem 3.5 and with the help of Theorems 3.7 and 4.9, we arrive our desired result.

Using Theorem 3.11, we prove the following corollary concerning the stabilities of (1).

Corollary 3.12. Assume that S and R be positive numbers. Let $f : \mathcal{B}_1 \longrightarrow \mathcal{B}_2$ be an even function fulfilling the inequality (49) for all $x \in \mathcal{B}_1$. Then there is only one quartic mapping $\mathcal{Q}(x) : \mathcal{B}_1 \longrightarrow \mathcal{B}_2$ satisfying the functional equation (1) and

$$\|f(x) - \mathcal{C}(x) - \mathcal{Q}(x)\| \leq \begin{cases} \frac{S}{\lambda |2^{3} - 1|} + \frac{S}{2|k^{4} - 1|};\\ \frac{S}{\lambda |2^{3} - 2^{R}|} + \frac{S|x||^{R}}{2|k^{4} - k^{R}|};\\ \frac{S}{\lambda |2^{3} - 2^{2R}|} + \frac{S|x||^{2R}}{2|k^{4} - k^{2R}|}; \end{cases}$$
(71)

for all $x \in \mathcal{B}_1$.

4. Stability in quasi beta Banach space

In this section, we investigate the generalized Ulam-Hyers stability of the functional equation (1) in Quasi Beta Banach Space. To prove stability results, let us take \mathcal{B}_1 be a normed space and \mathcal{B}_2 be a Quasi Beta Banach Space.

4.1. Hyers Method.

Theorem 4.1. Let $f : \mathcal{B}_1 \longrightarrow \mathcal{B}_2$ be an odd function fulfilling the inequality (11) for all $x, y \in \mathcal{B}_1$, where $L : \mathcal{B}_1^2 \longrightarrow [0, \infty)$ with the condition (12) for all $x \in \mathcal{B}_1$. Then there exists only one cubic mapping $\mathcal{C} : \mathcal{B}_1 \longrightarrow \mathcal{B}_2$ satisfying the functional equation (1) and

$$\|\mathcal{C}(x) - f(x)\| \le \frac{K^{N-1}}{\lambda^{\beta}} \sum_{M = \frac{1-J}{2}}^{\infty} \frac{L(2^{MJ}x, 0)}{2^{3MJ}}$$
(72)

for all $x \in \mathcal{B}_1$ with $J = \pm 1$ and $\lambda = 2k^2(k^2 - 1)$, where the mapping \mathcal{C} is defined in (14) for all $x \in \mathcal{B}_1$.

PROOF. From (16), we arrive

$$\left\| -\frac{k^2}{4}(k^2 - 1)f(2x) + 2k^2\left(k^2 - 1\right)f(x) \right\| \le L(x, 0)$$
(73)

for all $x \in \mathcal{B}_1$. It follows from (73) and since $k \neq 0, \pm 1$ that

$$\left\|\frac{f(2x)}{2^3} - f(x)\right\| \le \frac{L(x,0)}{\left(2k^2\left(k^2 - 1\right)\right)^{\beta}}$$
(74)

for all $x \in \mathcal{B}_1$. Let $\lambda = 2k^2 (k^2 - 1)$ in above inequality, we arrive

$$\left\|\frac{f(2x)}{2^3} - f(x)\right\| \le \frac{L(x,0)}{\lambda^{\beta}} \tag{75}$$

for all $x \in \mathcal{B}_1$. The rest of the proof is similar to that of Theorem 3.1.

The following corollary is an immediate consequence of Theorem 4.1 concerning the stabilities of (1).

Corollary 4.2. Assume that S and R are positive numbers. Let $f : \mathcal{B}_1 \longrightarrow \mathcal{B}_2$ be an odd function fulfilling the inequality (27) for all $x, y \in \mathcal{B}_1$. Then there exists a one and only cubic mapping $\mathcal{C} : \mathcal{B}_1 \longrightarrow \mathcal{B}_2$ satisfying the functional equation (1) and

$$\|\mathcal{C}(x) - f(x)\| \leq \begin{cases} \frac{K^{N-1}S}{\lambda^{\beta}|2^{3} - 1|};\\ \frac{K^{N-1}S||x||^{R}}{\lambda^{\beta}|2^{3} - 2^{R\beta}|};\\ \frac{K^{N-1}S||x||^{2R}}{\lambda^{\beta}|2^{3} - 2^{2R\beta}|}; \end{cases}$$
(76)

for all $x \in \mathcal{B}_1$.

Theorem 4.3. Let $f : \mathcal{B}_1 \longrightarrow \mathcal{B}_2$ be an even function fulfilling the inequality (33) for all $x, y \in \mathcal{B}_1$, where $L : \mathcal{B}_1^2 \longrightarrow [0, \infty)$ satisfies the condition (34) for all $x \in \mathcal{B}_1$. Then there is only one quartic mapping $\mathcal{Q} : \mathcal{B}_1 \longrightarrow \mathcal{B}_2$ satisfying the functional equation (1) and

$$\|\mathcal{Q}(x) - f(x)\| \le \frac{K^{N-1}}{(2\ k^4)^{\beta}} \sum_{M=\frac{1-J}{2}}^{\infty} \frac{L(k^{MJ}x, 0)}{k^{4MJ}}$$
(77)

for all $x \in \mathcal{B}_1$ with $J = \pm 1$, where the mapping $\mathcal{Q}(x)$ is defined in (36) for all $x \in \mathcal{B}_1$.

PROOF. From (38), we arrive

$$\left\|2f(kx) - 2k^4 f(x)\right\| \le L(x,0)$$
 (78)

for all $x \in \mathcal{B}_1$. It follows from (78) and since $k \neq 0, \pm 1$ that

$$\left\|\frac{f(kx)}{k^4} - f(x)\right\| \le \frac{L(x,0)}{(2\ k^4)^{\beta}} \tag{79}$$

for all $x \in \mathcal{B}_1$. The rest of the proof is similar to that of Theorem 3.1.

The following corollary is an immediate consequence of Theorem 4.3 concerning the stabilities of (1).

Corollary 4.4. Assume that S and R are positive numbers. Let $f : \mathcal{B}_1 \longrightarrow \mathcal{B}_2$ be an even function fulfilling the inequality (40) for all $x, y \in \mathcal{B}_1$. Then there is only one quartic mapping $\mathcal{Q}(x) : \mathcal{B}_1 \longrightarrow \mathcal{B}_2$ satisfying the functional equation (1) and

$$\left\|\mathcal{Q}(x) - f(x)\right\| \leq \begin{cases} \frac{K^{N_1}k^4 S}{(2k^4)^{\beta} |k^4 - 1|};\\ \frac{K^{N_1}k^4 S||x||^R}{(2k^4)^{\beta} |k^4 - k^{R\beta}|};\\ \frac{K^{N_1}k^4 S||x||^{2R}}{(2k^4)^{\beta} |k^4 - k^{2R\beta}|}; \end{cases}$$
(80)

for all $x \in \mathcal{B}_1$.

Theorem 4.5. Let $f : \mathcal{B}_1 \longrightarrow \mathcal{B}_2$ be a function fulfilling the inequality (44) for all $x, y \in \mathcal{B}_1$, where $L : \mathcal{B}_1^2 \longrightarrow [0, \infty)$ satisfies the conditions (12) and (34) for all $x \in \mathcal{B}_1$. Then there are only one cubic mapping $\mathcal{C} : \mathcal{B}_1 \longrightarrow \mathcal{B}_2$ and only one quartic mapping $\mathcal{Q} : \mathcal{B}_1 \longrightarrow \mathcal{B}_2$ satisfying the functional equation (1) and

$$\|f(x) - \mathcal{C}(x) - \mathcal{Q}(x)\| \leq \frac{K^N}{2^{\beta}} \left\{ \frac{1}{\lambda^{\beta}} \sum_{M=\frac{1-J}{2}}^{\infty} \left(\frac{L(2^{MJ}x,0)}{2^{3MJ}} + \frac{L(-2^{MJ}x,0)}{2^{3MJ}} \right) + \frac{1}{(2k^4)^{\beta}} \sum_{M=\frac{1-J}{2}}^{\infty} \left(\frac{L(k^{MJ}x,0)}{k^{4MJ}} + \frac{L(-k^{MJ}x,0)}{k^{4MJ}} \right) \right\}$$
(81)

for all $x \in \mathcal{B}_1$ with $J = \pm 1$, where the mappings $\mathcal{C}(x)$ and $\mathcal{Q}(x)$ are defined in (14) and (36), respectively, for all $x \in \mathcal{B}_1$.

PROOF. The proof is similar lines to that of Theorem 3.5.

The following corollary is an immediate consequence of Theorem 4.5 concerning the stabilities of (1).

Corollary 4.6. Assume that S and R are positive numbers. Let $f : \mathcal{B}_1 \longrightarrow \mathcal{B}_2$ be a function fulfilling the inequality (49) for all $x, y \in \mathcal{B}_1$. Then there are only one

cubic mapping $C : \mathcal{B}_1 \longrightarrow \mathcal{B}_2$ and only one quartic mapping $Q : \mathcal{B}_1 \longrightarrow \mathcal{B}_2$ satisfying the functional equation (1) and

$$\|f(x) - \mathcal{C}(x) - \mathcal{Q}(x)\| \leq \begin{cases} \frac{K^{N} S}{2^{\beta}} \left(\frac{1}{\lambda^{\beta} |2^{3} - 1|} + \frac{k^{4}}{(2k^{4})^{\beta} |k^{4} - 1|} \right); \\ \frac{K^{N} S||x||^{R}}{2^{\beta}} \left(\frac{1}{\lambda |2^{3} - 2^{R^{\beta}}|} + \frac{k^{4}}{(2k^{4})^{\beta} |k^{4} - k^{R^{\beta}}|} \right); \\ \frac{K^{N} S||x||^{2R}}{2^{\beta}} \left(\frac{1}{\lambda |2^{3} - 2^{2R^{\beta}}|} + \frac{k^{4}}{(2k^{4})^{\beta} |k^{4} - k^{2R^{\beta}}|} \right); \end{cases}$$

$$(82)$$

for all $x \in \mathcal{B}_1$.

4.2. Radu's method. The proof of following theorems and corollaries are similar lines to that of Section 3.2.

Theorem 4.7. Let $f : \mathcal{B}_1 \longrightarrow \mathcal{B}_2$ be an odd function fulfilling the inequality (11), for all $x, y \in \mathcal{B}_1$, where $L : \mathcal{B}_1^2 \longrightarrow [0, \infty)$ satisfies the condition (51) and ℓ_I is defined in (52) such that holds for all $x, y \in \mathcal{B}_1$. Assume that there exists $\mathcal{L} = \mathcal{L}(I)$ such that the function

$$L(x,0) = \frac{2^3}{\lambda^{\beta}} L\left(\frac{x}{2},0\right)$$

satisfies the property (53), for all $x \in \mathcal{B}_1$. Then there is only one cubic mapping $\mathcal{C}: \mathcal{B}_1 \longrightarrow \mathcal{B}_2$ satisfying the functional equation (1) and

$$\|\mathcal{C}(x) - f(x)\| \le \left(\frac{\mathcal{L}^{1-I}}{1-\mathcal{L}}\right) L(x,0)$$
(83)

for all $x \in \mathcal{B}_1$.

Corollary 4.8. Assume that S and R are positive numbers. Let $f : \mathcal{B}_1 \longrightarrow \mathcal{B}_2$ be an odd function fulfilling the inequality (27), for all $x \in \mathcal{B}_1$. Then there is only one cubic mapping $\mathcal{C} : \mathcal{B}_1 \longrightarrow \mathcal{B}_2$ satisfying the functional equation (1) and

$$\|\mathcal{C}(x) - f(x)\| \leq \begin{cases} \frac{S \ 2^{3}}{\lambda^{\beta} |2^{3} - 1|};\\ \frac{S \ 2^{3} ||x||^{R}}{\lambda^{\beta} |2^{3} - 2^{R\beta}|};\\ \frac{S \ 2^{3} ||x||^{2R}}{\lambda^{\beta} |2^{3} - 2^{2R\beta}|}; \end{cases}$$
(84)

for all $x \in \mathcal{B}_1$.

Theorem 4.9. Let $f : \mathcal{B}_1 \longrightarrow \mathcal{B}_2$ be an even function fulfilling the inequality (33), for all $x, y \in \mathcal{B}_1$, where $L : \mathcal{B}_1^2 \longrightarrow [0, \infty)$ satisfies the condition (64) and ℓ_I

is defined in 4FMaq.1a such that holds for all $x, y \in \mathcal{B}_1$. Assume that there exists $\mathcal{L} = \mathcal{L}(I)$ such that the function

$$L(x,0) = \frac{1}{2^{\beta}}L\left(\frac{x}{2},0\right)$$

with the property (66) for all $x \in \mathcal{B}_1$. Then there is only one quartic mapping $\mathcal{Q}: \mathcal{B}_1 \longrightarrow \mathcal{B}_2$ satisfying the functional equation (1) and

$$\|\mathcal{Q}(x) - f(x)\| \le \left(\frac{\mathcal{L}^{1-I}}{1-\mathcal{L}}\right) L(w,0)$$
(85)

for all $x \in \mathcal{B}_1$.

Corollary 4.10. Assume that S and R are positive numbers. Let $f : \mathcal{B}_1 \longrightarrow \mathcal{B}_2$ be an even function fulfilling the inequality (40), for all $x \in \mathcal{B}_1$. Then there is only one quartic mapping $\mathcal{Q} : \mathcal{B}_1 \longrightarrow \mathcal{B}_2$ satisfying the functional equation (1) and

$$\left\|\mathcal{Q}(x) - f(x)\right\| \leq \begin{cases} \frac{S}{(2k^{4})^{\beta} |k^{4} - 1|};\\ \frac{S|x||^{R}}{(2k^{4})^{\beta} |k^{4} - k^{R\beta}|};\\ \frac{S||x||^{2R}}{(2k^{4})^{\beta} |k^{4} - k^{2R\beta}|}; \end{cases}$$
(86)

for all $x \in \mathcal{B}_1$.

Theorem 4.11. Let $f : \mathcal{B}_1 \longrightarrow \mathcal{B}_2$ be a function fulfilling the inequality (44), for all $x, y \in \mathcal{B}_1$, where $L : \mathcal{B}_1^2 \longrightarrow [0, \infty)$ satisfies the conditions (51) and (64), and ℓ_I is respectively defined in (52) and (65) that holds for all $x, y \in \mathcal{B}_1$. Assume that there exists $\mathcal{L} = \mathcal{L}(I)$ such that the functions

$$L(x,0) = \frac{1}{2^{\beta}}L\left(\frac{x}{2},0\right) \quad and \quad L(x,0) = \frac{2^{3}}{\lambda^{\beta}}L\left(\frac{x}{2},0\right)$$

with the properties (53) and (66), for all $x \in \mathcal{B}_1$. Then there are only one cubic mapping $\mathcal{C} : \mathcal{B}_1 \longrightarrow \mathcal{B}_2$ and only one quartic mapping $\mathcal{Q} : \mathcal{B}_1 \longrightarrow \mathcal{B}_2$ satisfying the functional equation (1) and

$$\|f(x) - \mathcal{C}(x) - \mathcal{Q}(x)\| \le \frac{K}{2^{\beta}} \left(\frac{\mathcal{L}^{1-I}}{1-\mathcal{L}}\right) \left(L(x,0) + L(-x,0)\right)$$
(87)

for all $x \in \mathcal{B}_1$.

Corollary 4.12. Assume that S and R are positive numbers. Let $f : \mathcal{B}_1 \longrightarrow \mathcal{B}_2$ be an even function fulfilling the inequality (49), for all $x \in \mathcal{B}_1$. Then there is only

one quartic mapping $\mathcal{Q}(x): \mathcal{B}_1 \longrightarrow \mathcal{B}_2$ satisfying the functional equation (1) and

$$\|f(x) - \mathcal{C}(x) - \mathcal{Q}(x)\| \leq \begin{cases} \frac{K}{2^{\beta}} \left(\frac{S \ 2^{3}}{\lambda^{\beta} |2^{3} - 1|} + \frac{S}{(2k^{4})^{\beta} |k^{4} - 1|} \right); \\ \frac{K}{2^{\beta}} \left(\frac{S \ 2^{3} ||x||^{R}}{\lambda^{\beta} |2^{3} - 2^{R\beta}|} + \frac{S|x||^{R}}{(2k^{4})^{\beta} |k^{4} - k^{R\beta}|} \right); \\ \frac{K}{2^{\beta}} \left(\frac{S \ 2^{3} ||x||^{2R}}{\lambda^{\beta} |2^{3} - 2^{2R\beta}|} + \frac{S||x||^{2R}}{(2k^{4})^{\beta} |k^{4} - k^{2R\beta}|} \right); \end{cases}$$
(88)

for all $x \in \mathcal{B}_1$.

5. Stability in fuzzy Banach space

In this section, we investigate the generalized Ulam-Hyers stability of the functional equation (1) in fuzzy Banach spaces. To prove stability results, let us take $\mathcal{B}_3, (\mathcal{B}_1, N)$ and (\mathcal{B}_2, N') are linear space, fuzzy normed space and fuzzy Banach space, respectively.

5.1. Definitions on fuzzy Banach spaces.

Definition 5.1. Let X be a real linear space. A function $N: X \times \mathbb{R} \longrightarrow [0, 1]$ (so-called fuzzy subset) is said to be a fuzzy norm on X if for all $x, y \in X$ and all $s, t \in \mathbb{R},$

N(x, c) = 0, for $c \le 0$; (FNS1)

x = 0 if and only if N(x, c) = 1, for all c > 0; $N(cx, t) = N(x, \frac{t}{c})$ if $c \neq 0$. (FNS2)

$$(FNS3)$$
 $N(cx,t) = N\left(x, \frac{t}{|c|}\right)$ if $c \neq 0$

 $N(x+y,s+t) \ge \min\{N(x,s), N(y,t)\};$ (FNS4)

(FNS5) $N(x, \cdot)$ is a non-decreasing function on \mathbb{R} and $\lim_{t\to\infty} N(x, t) = 1$;

(FNS6)for $x \neq 0, N(x, \cdot)$ is (upper semi) continuous on \mathbb{R} .

The pair (X, N) is called a fuzzy normed linear space. One may regard N(X,t) as the truth-value of the statement the norm of x is less than or equal to the real number t'.

Example 5.2. Let $(X, || \cdot ||)$ be a normed linear space. Then

$$N(x,t) = \begin{cases} \frac{t}{t+\|x\|}, & t > 0, \ x \in X, \\ 0, & t \le 0, \ x \in X \end{cases}$$

is a fuzzy norm on X.

Definition 5.3. Let (X, N) be a fuzzy normed linear space. Let $\{x_n\}$ be a sequence in X. Then $\{x_n\}$ is said to be convergent if there exists $x \in X$ such that $\lim_{n\to\infty} N(x_n-x,t) = 1$, for all t > 0. In that case, x is called the limit of the sequence ${x_n}^{n \to \infty}$ and we denote it by $N - \lim_{n \to \infty} x_n = x$.

Definition 5.4. A sequence $\{x_n\}$ in X is called Cauchy if for each $\epsilon > 0$ and each t > 0, there exists n_0 such that, for all $n \ge n_0$ and all p > 0, we have $N(x_{n+p} - x_n, t) > 1 - \epsilon$.

Definition 5.5. Every convergent sequence in a fuzzy normed space is Cauchy. If each Cauchy sequence is convergent, then the fuzzy norm is said to be complete and this fuzzy normed space is called a fuzzy Banach space.

Definition 5.6. A mapping $f : X \longrightarrow Y$ between fuzzy normed spaces X and Y is continuous at a point x_0 if, for each sequence $\{x_n\}$ covering to x_0 in X, the sequence $f\{x_n\}$ converges to $f(x_0)$. If f is continuous at each point of $x_0 \in X$, then f is said to be continuous on X.

5.2. Hyers method.

Theorem 5.1. Let $f : \mathcal{B}_1 \longrightarrow \mathcal{B}_2$ be an odd mapping fulfilling the inequality

$$\mathcal{N}\left(F_k(x,y),s\right) \ge \mathcal{N}'\left(L\left(x,y\right),s\right) \tag{89}$$

for all $x, y \in \mathcal{B}_1$ and s > 0, where $L : \mathcal{B}_1^2 \longrightarrow \mathcal{B}_3$, $0 < \left(\frac{s}{2^3}\right)^J < 1$ and the following conditions hold

$$\lim_{N \to \infty} \mathcal{N}' \left(L \left(2^{JN} x, 2^{JN} y \right), 2^{3JN} s \right) = 1$$
(90)

$$\mathcal{N}'\left(L\left(2^J z, 2^J y\right), s\right) \ge \mathcal{N}'\left(t^J L\left(x, y\right), s\right) \tag{91}$$

for all $x, y \in \mathcal{B}_1$ and all s > 0. Then there is a unique cubic mapping $\mathcal{C} : \mathcal{B}_1 \longrightarrow \mathcal{B}_2$ which satisfies (1) and

$$\mathcal{N}\left(f(x) - \mathcal{C}(x), s\right) \ge \mathcal{N}'\left(L\left(x, 0\right), \frac{s|2^3 - t|}{2^3 \eta}\right)$$
(92)

for all $x \in \mathcal{B}_1$ with $J = \pm 1$ and $\lambda = 2k^2(k^2 - 1)$. The mapping \mathcal{C} is defined by

$$\lim_{N \to \infty} \mathcal{N}\left(\mathcal{C}(x) - \frac{f(2^s x)}{2^{3N}}, s\right) = 1$$
(93)

for all $x \in \mathcal{B}_1$.

PROOF. Changing y by 0 in (89), we reach

$$\mathcal{N}\left(f(x) + f(kx) + f(x) + f(-kx) - k^2 \left[2f(x) + f(x) + f(-x)\right] + 2(k^4 - 1)f(x) - \frac{k^2}{4}(k^2 - 1)f(2x), s\right) \ge N'\left(L\left(x, 0\right), s\right)$$
(94)

for all $x \in \mathcal{B}_1$. Using oddness of f in (94) and it follows from (94) that

$$\mathcal{N}\left(2f(x) - 2k^2f(x) + 2(k^4 - 1)f(x) - \frac{k^2}{4}(k^2 - 1)f(2x), s\right) \ge N'\left(L\left(x, 0\right), s\right);$$
 or

$$\mathcal{N}\left(-\frac{k^2}{4}(k^2-1)f(2x) + 2k^2\left(k^2-1\right)f(x),s\right) \ge N'\left(L\left(x,0\right),s\right) \tag{95}$$

for all $x \in \mathcal{B}_1$. It follows from (95) and $k \neq 0, \pm 1$,

$$\mathcal{N}\left(\frac{f(2x)}{2^{3}} - f(x), \frac{s}{2k^{2}(k^{2} - 1)}\right) \ge \mathcal{N}'(L(x, 0), s)$$
(96)

for all $x \in \mathcal{B}_1$. Set $\lambda = 2k^2(k^2 - 1)$ in the above inequality, we have

$$\mathcal{N}\left(\frac{f(2x)}{2^{3}} - f(x), \frac{s}{\lambda}\right) \ge \mathcal{N}'\left(L\left(x, 0\right), s\right) \tag{97}$$

for all $x \in \mathcal{B}_1$. Replacing x by $2^N x$ in (97), we obtain

$$\mathcal{N}\left(\frac{f(2^{N+1}x)}{2^3} - f(2^Nx), \frac{s}{\lambda}\right) \ge \mathcal{N}'\left(L\left(2^Nx, 0\right), s\right) \tag{98}$$

for all $x \in \mathcal{B}_1$ and s > 0. Using (91), (FNS3) in (98), we arrive

$$\mathcal{N}\left(\frac{f(2^{N+1}x)}{2^3} - f(2^Nx), \frac{s}{\lambda}\right) \ge \mathcal{N}'\left(L\left(x,0\right), \frac{s}{t^N}\right) \tag{99}$$

for all $x \in \mathcal{B}_1$ and s > 0. It is easy to verify from (99), that

$$\mathcal{N}\left(\frac{f(2^{N+1}x)}{2^{3(N+1)}} - \frac{f(2^Nx)}{2^{3N}}, \frac{s}{\lambda \ 2^{3N}}\right) \ge \mathcal{N}'\left(L\left(x,0\right), \frac{s}{t^N}\right) \tag{100}$$

for all $x \in \mathcal{B}_1$ and s > 0. Switching s by $t^N s$ in (100), we get

$$\mathcal{N}\left(\frac{f(2^{N+1}x)}{2^{3(q+1)}} - \frac{f(2^{N}x)}{2^{3N}}, \left(\frac{t}{2^{3}}\right)^{N}\frac{s}{\lambda}\right) \ge \mathcal{N}'\left(L\left(x,0\right), s\right)$$
(101)

for all $x \in \mathcal{B}_1$ and s > 0. It is easy to see that

$$\frac{f(2^N x)}{2^{3N}} - f(x) = \sum_{r=0}^{N-1} \left[\frac{f(2^{r+1}x)}{2^{3(r+1)}} - \frac{f(2^r x)}{2^{3r}} \right]$$
(102)

for all $x \in \mathcal{B}_1$. From equations (101) and (102), we have

$$\mathcal{N}\left(\frac{f(2^{N}x)}{2^{3N}} - f(x), \sum_{r=0}^{N-1} \left(\frac{t}{2^{3}}\right)^{r} \frac{s}{\lambda}\right) \ge \min \bigcup_{r=0}^{N-1} \left\{ \mathcal{N}\left(\frac{f(2^{r+1}x)}{2^{3(r+1)}} - \frac{f(2^{r}x)}{2^{3r}}, \left(\frac{t}{2^{3}}\right)^{r} \frac{s}{\lambda}\right) \right\}$$
$$\ge \min \bigcup_{r=0}^{N-1} \left\{ \mathcal{N}'\left(L\left(x,0\right),s\right) \right\} = \mathcal{N}'\left(L\left(x,0\right),s\right)$$
(103)

for all $x \in \mathcal{B}_1$ and all s > 0. Replacing x by $2^P x$ in (103) and using (91), (FNS3), and substituting s by $t^P s$, we obtain

$$\mathcal{N}\left(\frac{f(2^{N+P}x)}{2^{3(N+P)}} - \frac{f(2^{P}x)}{2^{3P}}, \sum_{r=P}^{N+P-1} \left(\frac{t}{2^{3}}\right)^{r} \frac{s}{\lambda}\right) \ge \mathcal{N}'\left(L\left(x,0\right), s\right)$$
(104)

for all $x \in \mathcal{B}_1$ and all s > 0 and all $P > N \ge 0$. Using (FNS3) in (104), we obtain

$$\mathcal{N}\left(\frac{f(2^{N+P}x)}{2^{3(N+P)}} - \frac{f(2^{P}x)}{2^{3P}}, s\right) \ge \mathcal{N}'\left(L\left(x,0\right), \frac{s \lambda}{\sum\limits_{r=P}^{N+P-1} \left(\frac{t}{2^{3}}\right)^{r}}\right)$$
(105)

for all $x \in \mathcal{B}_1$ and s > 0. Since $0 < t < 2^3$ and $\sum_{r=0}^{N} \left(\frac{t}{2^3}\right)^r < \infty$, the Cauchy criterion for convergence and (FNS5) implies that $\left\{\frac{f(2^Nx)}{2^{3N}}\right\}$ is a Cauchy sequence in (\mathcal{B}_2, N') . Since (\mathcal{B}_2, N') is a fuzzy Banach space, this sequence converges to some point $\mathcal{C}(x) \in \mathcal{B}_2$. So one can define the mapping $\mathcal{C} : \mathcal{B}_1 \longrightarrow \mathcal{B}_2$ by

$$\lim_{N \to \infty} \mathcal{N}\left(\mathcal{C}(x) - \frac{f(2^N x)}{2^{3N}}, s\right) = 1$$
(106)

for all $x \in \mathcal{B}_1$ and all s > 0. Letting P = 0 and $N \to \infty$ in (105), we get

$$\mathcal{N}\left(\mathcal{C}(x) - f(x), s\right) \ge \mathcal{N}'\left(L\left(x, 0\right), \frac{s \ \lambda(2^3 - t)}{2^3}\right)$$

for all $x \in \mathcal{B}_1$ and all s > 0. To prove \mathcal{C} satisfies the (1), replacing (x, y) by $(2^N x, 2^N y)$ in (89), we obtain

$$\mathcal{N}\left(\mathcal{C}(x,y),s\right) = \mathcal{N}\left(\frac{1}{2^{3N}}F_k(2^Nx,2^Ny),s\right) \ge \mathcal{N}'\left(L\left(2^Nx,2^Ny\right),2^{3N}s\right)$$
(107)

for all $x, y \in \mathcal{B}_1$ and all s > 0. Now,

$$\begin{split} &N\Big(\mathcal{C}(x+ky)+\mathcal{C}(kx+y)+\mathcal{C}(x-ky)+\mathcal{C}(y-kx)\\&\quad -k^2\left[2\mathcal{C}(x+y)-\mathcal{C}(x-y)-\mathcal{C}(y-x)\right]\\&\quad -2(k^4-1)[\mathcal{C}(x)+\mathcal{C}(y)]-\frac{k^2}{4}(k^2-1)[\mathcal{C}(2x)+\mathcal{C}(2y)],s\Big)\\ &\geq \min\left\{\mathcal{N}\left(\mathcal{C}(x+ky)-\frac{1}{2^{3N}}f(2^N(x+ky)),\frac{s}{12}\right),\\&\quad \mathcal{N}\left(\mathcal{C}(x+y)-\frac{1}{2^{3N}}f(2^N(x-ky)),\frac{s}{12}\right),\\&\quad \mathcal{N}\left(\mathcal{C}(x-ky)-\frac{1}{2^{3N}}f(2^N(x-ky)),\frac{s}{12}\right),\\&\quad \mathcal{N}\left(\mathcal{C}(y-kx)-\frac{1}{2^{3N}}f(2^N(y-kx)),\frac{s}{12}\right),\\&\quad \mathcal{N}\left(k^2\left[2\mathcal{C}(x+y)-\frac{2}{2^{4N}}f(2^N(x-y))\right],\frac{s}{12}\right),\\&\quad \mathcal{N}\left(k^2\left[-\mathcal{C}(x-y)+\frac{1}{2^{3N}}f(2^N(y-x))\right],\frac{s}{12}\right),\\&\quad \mathcal{N}\left(k^2\left[-\mathcal{C}(y-x)+\frac{1}{2^{3N}}f(2^N(y-x))\right],\frac{s}{12}\right),\\&\quad \mathcal{N}\left(-2(k^4-1)\left[\mathcal{C}(x)+\frac{1}{2^{3N}}f(2^N(y))\right],\frac{s}{12}\right),\\&\quad \mathcal{N}\left(-2(k^4-1)\left[\mathcal{C}(2y)+\frac{1}{2^{3N}}f(2^N(2x))\right],\frac{s}{12}\right),\\&\quad \mathcal{N}\left(-\frac{k^2}{4}(k^2-1)\left[\mathcal{C}(2y)+\frac{1}{2^{3N}}f(2^N(2y))\right],\frac{s}{12}\right),\\&\quad \mathcal{N}\left(\frac{1}{2^{2N}}f(2^N(x+ky))+\frac{1}{2^{3N}}f(2^N(x+y))+\frac{1}{2^{3N}}f(2^N(x-ky))\right)\\&\quad +\frac{1}{2^{3N}}f(2^N(y-kx))k^2\left[\frac{2}{2^{3N}}f(2^N(x+y))-\frac{1}{2^{3N}}f(2^N(x-ky))\right]\\&\quad -\frac{2}{2^{2N}}f(2^N(y-x))\right]-2(k^4-1)\left[\frac{1}{2^{3N}}f(2^N(2y))\right],\frac{s}{12}\right\}\right\} (108) \end{split}$$

for all $x, y \in \mathcal{B}_1$ and all s > 0. Using (106), (107), (FNS5) and (108), we reach

$$N\Big(\mathcal{C}(x+ky) + \mathcal{C}(kx+y) + \mathcal{C}(x-ky) + \mathcal{C}(y-kx) \\ -k^{2} \left[2\mathcal{C}(x+y) - \mathcal{C}(x-y) - \mathcal{C}(y-x)\right] \\ -2(k^{4}-1)[\mathcal{C}(x) + \mathcal{C}(y)] - \frac{k^{2}}{4}(k^{2}-1)[\mathcal{C}(2x) + \mathcal{C}(2y)], s\Big) \\ \geq \min\left\{1, 1, 1, 1, 1, 1, 1, 1, 1, N'\left(L\left(2^{N}x, 2^{N}y\right), 2^{3N}s\right)\right\}$$
(109)

for all $x, y \in \mathcal{B}_1$ and all s > 0. Approaching N tends to infinity in (111) and applying (91), we get

$$N\Big(\mathcal{C}(x+ky) + \mathcal{C}(kx+y) + \mathcal{C}(x-ky) + \mathcal{C}(y-kx) - k^2[2\mathcal{C}(x+y) - \mathcal{C}(x-y) - \mathcal{C}(y-x)] - 2(k^4 - 1)[\mathcal{C}(x) + \mathcal{C}(y)] - \frac{k^2}{4}(k^2 - 1)[\mathcal{C}(2x) + \mathcal{C}(2y)], s\Big) = 1 \quad (110)$$

for all $x, y \in \mathcal{B}_1$ and all s > 0. Using (FNS2) in (110), it gives

$$C(x + ky) + C(kx + y) + C(x - ky) + C(y - kx)$$

= $k^2 [2C(x + y) + C(x - y) + C(y - x)]$
+ $2(k^4 - 1)[C(x) + C(y)] + \frac{k^2}{4}(k^2 - 1)[C(2x) + C(2y)]$

for all $x, y \in \mathcal{B}_1$. Hence \mathcal{C} satisfies the functional equation (1). The existence of \mathcal{C} is unique. Indeed, if \mathcal{C}' be another cubic functional equation satisfying (1) and (93). So,

$$N(\mathcal{C}(x) - \mathcal{C}'(x), s) = \mathcal{N}\left(\frac{\mathcal{C}(2^{N}x)}{2^{3N}} - \frac{\mathcal{C}'(2^{N}x)}{2^{3N}}, s\right)$$

$$\geq \min\left\{\mathcal{N}\left(\frac{\mathcal{C}(2^{N}x)}{2^{3N}} - \frac{f(2^{N}x)}{2^{3N}}, \frac{s}{2}\right), \mathcal{N}\left(\frac{\mathcal{C}'(2^{N}x)}{2^{3N}} - \frac{f(2^{N}x)}{2^{3N}}, \frac{s}{2}\right)\right\}$$

$$\geq \mathcal{N}'\left(L\left(2^{N}z, 2^{N}0\right), \frac{s\lambda(2^{3} - t)2^{3N}}{2^{3}2}\right)$$

$$= \mathcal{N}'\left(L\left(x, 0\right), \frac{s\lambda(2^{3} - t)2^{3N}}{2^{3}t^{N}2}\right)$$

for all $x \in \mathcal{B}_1$ and all s > 0. Since

$$\lim_{N \to \infty} \frac{s \ \lambda (2^3 - t) 2^{3N}}{2^3 t^N \ 2} = \infty,$$

we obtain

$$\lim_{N \to \infty} \mathcal{N}'\left(L\left(x,0\right), \frac{s \ \lambda(2^3 - t)2^{3N}}{2^3 t^N \ 2}\right) = 1.$$

Thus

$$N(\mathcal{C}(x) - \mathcal{C}'(x), s) = 1$$

for all $x \in \mathcal{B}_1$ and all s > 0, hence $\mathcal{C}(x) = \mathcal{C}'(x)$. Therefore $\mathcal{C}(x) - \mathcal{C}'(x)$ is unique. Hence for J = 1 the theorem holds.

Replacing x by $\frac{x}{2}$ in (97), we achieve

$$\mathcal{N}\left(f(x) - 2^{3}\left(\frac{x}{2}\right), \frac{2^{3} s}{\lambda}\right) \ge \mathcal{N}'\left(L\left(\frac{x}{2}, 0\right), s\right)$$
(111)

for all $x \in \mathcal{B}_1$. The rest of the proof is similar ideas to that of case J = 1. Thus the theorem is true for J = -1. Hence the proof is complete.

The following corollary is an immediate consequence of Theorem 5.1 concerning the stabilities of (1).

Corollary 5.2. Assume that S and R be positive numbers. Let $f : \mathcal{B}_1 \longrightarrow \mathcal{B}_2$ be an odd function fulfilling the inequality

$$\mathcal{N}(F_k(x,y),s) \ge \begin{cases} \mathcal{N}'(S,s) \\ \mathcal{N}'(S\{||x||^R + ||y||^R\},s), & R \neq 3; \\ \mathcal{N}'(S\{||x||^R ||y||^R + \{||x||^{2R} + ||y||^{2R}\}\},s), & 2R \neq 3; \end{cases}$$
(112)

for all $x, y \in \mathcal{B}_1$, then there is only one cubic mapping $\mathcal{C} : \mathcal{B}_1 \longrightarrow \mathcal{B}_2$ satisfying the functional equation (1) and

$$\mathcal{N}(f(x) - \mathcal{C}(x), s) \ge \begin{cases} \mathcal{N}'(2^3 \ S, s \ \lambda | 2^3 - 1 |), \\ \mathcal{N}'(2^3 \ S ||x||^R, s \ \lambda | 2^3 - 2^R |), \\ \mathcal{N}'(2^3 \ S ||x||^{2R}, s \ \lambda | 2^3 - 2^{2R} |) \end{cases}$$
(113)

for all $x \in \mathcal{B}_1$.

Theorem 5.3. Let $f : \mathcal{B}_1 \longrightarrow \mathcal{B}_2$ be an even mapping fulfilling the inequality

$$\mathcal{N}\left(F_k(x,y),s\right) \ge \mathcal{N}'\left(L\left(x,y\right),s\right) \tag{114}$$

for all $x, y \in \mathcal{B}_1$ and s > 0, where $L : \mathcal{B}_1^2 \longrightarrow \mathcal{B}_3$ with $0 < \left(\frac{s}{k^4}\right)^J < 1$ and the conditions

$$\lim_{N \to \infty} \mathcal{N}' \left(L \left(k^{JN} x, k^{JN} y \right), k^{3JN} s \right) = 1$$
(115)

$$\mathcal{N}'\left(L\left(k^J z, k^J y\right), s\right) \ge \mathcal{N}'\left(t^J L\left(x, y\right), s\right) \tag{116}$$

for all $x, y \in \mathcal{B}_1$ and all s > 0. Then there is a unique quartic mapping $\mathcal{Q} : \mathcal{B}_1 \longrightarrow \mathcal{B}_2$ which satisfies (1) and

$$\mathcal{N}\left(f(x) - \mathcal{Q}(x), s\right) \ge \mathcal{N}'\left(L\left(x, 0\right), \frac{2s|k^4 - t|}{k^4}\right)$$
(117)

for all $x \in \mathcal{B}_1$ with $J = \pm 1$. The mapping $\mathcal{Q}(x)$ is defined by

$$\lim_{N \to \infty} \mathcal{N}\left(\mathcal{Q}(x) - \frac{f(k^s x)}{k^{4N}}, s\right) = 1$$
(118)

for all $x \in \mathcal{B}_1$.

PROOF. Changing y by 0 in (114), we reach

$$\mathcal{N}\left(f(x) + f(kx) + f(x) + f(-kx) - k^2 \left[2f(x) + f(x) + f(-x)\right] + 2(k^4 - 1)f(x) - \frac{k^2}{4}(k^2 - 1)f(2x), s\right) \ge N'\left(L\left(x, 0\right), s\right)$$
(119)

for all $x \in \mathcal{B}_1$. Using evenness of f in (119) and it follows from (119) that

$$\mathcal{N}\left(2f(kx) + 2f(x) - 4k^2f(x) + 2(k^4 - 1)f(x) - \frac{k^2}{4}(k^2 - 1)f(2x), s\right)$$

$$\geq N'\left(L\left(x, 0\right), s\right);$$

or

$$\mathcal{N}\left(2f(kx) + 2f(x) - 4k^2f(x) + 2(k^4 - 1)f(x) - 4k^2(k^2 - 1)f(x), s\right) \\\geq N'\left(L\left(x, 0\right), s\right);$$

or

$$\mathcal{N}\left(2f(kx) - 2k^4 f(x), s\right) \ge N'\left(L\left(x, 0\right), s\right) \tag{120}$$

for all $x \in \mathcal{B}_1$. It follows from (120) and since $k \neq 0, \pm 1$ that

$$\mathcal{N}\left(\frac{f(2x)}{k^4} - f(x), \frac{s}{2k^4}\right) \ge \mathcal{N}'\left(L\left(x, 0\right), s\right) \tag{121}$$

for all $x \in \mathcal{B}_1$. The rest of the proof is similar to that of Theorem 5.1.

The following corollary is an immediate consequence of Theorem 5.3 concerning the stabilities of (1).

Corollary 5.4. Assume that S and R are positive numbers. Let $f : \mathcal{B}_1 \longrightarrow \mathcal{B}_2$ be an even function fulfilling the inequality

$$\mathcal{N}(F_{k}(x,y),s) \geq \begin{cases} \mathcal{N}'(S,s) \\ \mathcal{N}'(S\{||x||^{R}+||y||^{R}\},s), & R \neq 4; \\ \mathcal{N}'(S\{||x||^{R}||y||^{R}+\{||x||^{2R}+||y||^{2R}\}\},s), & 2R \neq 4; \end{cases}$$
(122)

for all $x, y \in \mathcal{B}_1$, then there is only one quartic mapping $\mathcal{Q} : \mathcal{B}_1 \longrightarrow \mathcal{B}_2$ satisfying the functional equation (1) and

$$\mathcal{N}(f(x) - \mathcal{Q}(x), s) \ge \begin{cases} \mathcal{N}'(k^4 \ S, 2 \ s|k^4 - 1|), \\ \mathcal{N}'(k^4 \ S||x||^R, 2 \ s|k^4 - k^R|), \\ \mathcal{N}'(k^4 \ S||x||^{2R}, 2 \ s|k^4 - k^{2R}|) \end{cases}$$
(123)

for all $x \in \mathcal{B}_1$.

Theorem 5.5. Let $f : \mathcal{B}_1 \longrightarrow \mathcal{B}_2$ be a mapping fulfilling the inequality

$$\mathcal{N}\left(F_k(x,y),s\right) \ge \mathcal{N}'\left(L\left(x,y\right),s\right) \tag{124}$$

for all $x, y \in \mathcal{B}_1$ and s > 0, where $L : \mathcal{B}_1^2 \longrightarrow \mathcal{B}_3$, $0 < \left(\frac{s}{2^3}\right)^J < 1$; $0 < \left(\frac{s}{k^4}\right)^J < 1$, and the conditions (90), (115), (91), (116) hold, for all $x, y \in \mathcal{B}_1$ and all s > 0. Then there exists a unique cubic mapping $\mathcal{C} : \mathcal{B}_1 \longrightarrow \mathcal{B}_2$ and a unique quartic mapping $\mathcal{Q} : \mathcal{B}_1 \longrightarrow \mathcal{B}_2$ which satisfies (1) and

$$\mathcal{N}(f(x) - \mathcal{C}(x) - \mathcal{Q}(x), s) \\ \geq \min\left\{\mathcal{N}'\left(L(x, 0), \frac{s|2^3 - t|}{2^3 \eta}\right), \mathcal{N}'\left(L(-x, 0), \frac{s|2^3 - t|}{2^3 \eta}\right), \\ \mathcal{N}'\left(L(x, 0), \frac{2 s|k^4 - t|}{k^4}\right), \mathcal{N}'\left(L(-x, 0), \frac{2 s|k^4 - t|}{k^4}\right)\right\}$$
(125)

for all $x \in \mathcal{B}_1$ and $J = \pm 1$. The mappings \mathcal{C} and \mathcal{Q} are defined in (93) and (118), respectively.

PROOF. If we define

$$f_C(x) = \frac{f(x) - f(-x)}{2}$$
 for all $x \in \mathcal{B}_1$

it follows that

$$f_C(0) = 0$$
 and $f_C(-x) = -f_C(x)$ for all $x \in \mathcal{B}_1$.

So, by definition of $f_C(x)$ it is easy to verify that

$$\mathcal{N}\left(F_{C_k}(x,y),s\right) \ge \min\left\{\mathcal{N}\left(f(x,y),s\right), \mathcal{N}\left(f(-x,-y),s\right)\right\}$$
(126)

for all $x, y \in \mathcal{B}_1$ and s > 0. Hence, by Theorem 5.1,

$$\mathcal{N}\left(f_{C}(x) - \mathcal{C}(x), s\right) \geq \min\left\{\mathcal{N}'\left(L\left(x, 0\right), \frac{s|2^{3} - t|}{2^{3} \eta}\right), \mathcal{N}'\left(L\left(-x, 0\right), \frac{s|2^{3} - t|}{2^{3} \eta}\right)\right\}$$
(127)

for all $x \in \mathcal{B}_1$ and s > 0. Also, if we define

$$f_Q(x) = \frac{f(x) - f(-x)}{2}$$
 for all $x \in \mathcal{B}_1$

and it follows that

$$f_Q(0) = 0$$
 and $f_Q(-x) = f_Q(x)$ for all $x \in \mathcal{B}_1$.

So, by definition of $f_Q(x)$ it is easy to verify that

$$\mathcal{N}\left(F_{Q_k}(x,y),s\right) \ge \min\left\{\mathcal{N}\left(f(x,y),s\right), \mathcal{N}\left(f(-x,-y),s\right)\right\}$$
(128)

for all $x, y \in \mathcal{B}_1$ and s > 0. Hence, by Theorem 5.3,

$$\mathcal{N}\left(f_Q(x) - \mathcal{Q}(x), s\right) \ge \min\left\{\mathcal{N}'\left(L\left(x, 0\right), \frac{2 \left|s|k^4 - t\right|}{k^4}\right), \mathcal{N}'\left(L\left(-x, 0\right), \frac{2 \left|s|k^4 - t\right|}{k^4}\right)\right\}$$
(129)

for all $x \in \mathcal{B}_1$ and s > 0. Define

$$f(x) = f_C(x) + f_Q(x)$$
(130)

for all $x \in \mathcal{B}_1$. Using (127), (129) in (130), we arrive

$$\mathcal{N}\left(f(x) - \mathcal{C}(x) - \mathcal{Q}(x), 2s\right)$$

$$= \mathcal{N}\left(f_{C}(x) + f_{Q}(x) - \mathcal{C}(x) - \mathcal{Q}(x), 2s\right)$$

$$\geq \min\left\{\mathcal{N}\left(f_{C}(x) - \mathcal{C}(x), s\right), \mathcal{N}\left(f_{Q}(x) - \mathcal{Q}(x), s\right)\right\}$$

$$\geq \min\left\{\mathcal{N}'\left(L\left(x, 0\right), \frac{s|2^{3} - t|}{2^{3} \eta}\right), \mathcal{N}'\left(L\left(-x, 0\right), \frac{s|2^{3} - t|}{2^{3} \eta}\right), \mathcal{N}'\left(L\left(x, 0\right), \frac{2 s|k^{4} - t|}{k^{4}}\right), \mathcal{N}'\left(L\left(-x, 0\right), \frac{2 s|k^{4} - t|}{k^{4}}\right)\right\}$$
or all $x \in \mathcal{B}_{1}$ and all $s > 0$.

for all $x \in \mathcal{B}_1$ and all s > 0.

The following corollary is an immediate consequence of Theorem 5.5 concerning the stabilities of (1).

Corollary 5.6. Assume that S and R are positive numbers. Let $f : \mathcal{B}_1 \longrightarrow \mathcal{B}_2$ be an even function fulfilling the inequality

$$\mathcal{N}(F_{k}(x,y),s) \geq \begin{cases} \mathcal{N}'(S,s) \\ \mathcal{N}'(S\{||x||^{R}+||y||^{R}\},s), & R \neq 3,4; \\ \mathcal{N}'(S\{||x||^{R}||y||^{R}+\{||x||^{2R}+||y||^{2R}\}\},s), & 2R \neq 3,4; \end{cases}$$
(131)

for all $x, y \in \mathcal{B}_1$, then there is only one quartic mapping $\mathcal{Q} : \mathcal{B}_1 \longrightarrow \mathcal{B}_2$ satisfying the functional equation (1) and

$$\mathcal{N}(f(x) - \mathcal{Q}(x), s) \geq \begin{cases} \mathcal{N}'([2^3 + k^4] S, s[\lambda|2^3 - 1| + 2|k^4 - 1|]), \\ \mathcal{N}'([2^3 + k^4] S||x||^R, s[\lambda|2^3 - 2^R| + 2|k^4 - k^R|]), \\ \mathcal{N}'([2^3 + k^4] S||x||^{2R}, s[\lambda|2^3 - 2^{2R}| + 2|k^4 - k^{2R}|]), \end{cases}$$
(132)

for all $x \in \mathcal{B}_1$.

5.3. Radu's method.

Theorem 5.7. Let $f : \mathcal{B}_1 \longrightarrow \mathcal{B}_2$ be an odd function fulfilling the inequality (89), for all $x, y \in \mathcal{B}_1$ and all s > 0, where $L : \mathcal{B}_1^2 \longrightarrow [0, \infty)$ with the condition

$$\lim_{N \to \infty} \mathcal{N}' \left(L(\ell_I^N x, \ell_I^N y), \ell_I^{3N} \right) = 1$$
(133)

where

$$\ell_I = \begin{cases} 2 & if \quad I = 0, \\ \frac{1}{2} & if \quad I = 1 \end{cases}$$
(134)

holds for all $x, y \in \mathcal{B}_1$. Assume that there exists $\mathcal{L} = \mathcal{L}(I)$ such that the function

$$L(x,0) = \frac{2^3}{\lambda} L\left(\frac{x}{2},0\right)$$

satisfies the following property

$$\mathcal{N}'\left(\frac{1}{\ell_I^3}L(\ell_I x, 0), s\right) = \mathcal{N}'\left(\mathcal{L}L(x, 0), s\right)$$
(135)

for all $x \in \mathcal{B}_1$ and s > 0. Then there is only one cubic mapping $\mathcal{C} : \mathcal{B}_1 \longrightarrow \mathcal{B}_2$ satisfying the functional equation (1) and

$$\mathcal{N}\left(f(x) - \mathcal{C}(x), s\right) \ge \mathcal{N}'\left(\frac{\mathcal{L}^{1-I}}{1 - \mathcal{L}}L(x, 0), s\right),\tag{136}$$

for all $x \in \mathcal{B}_1$.

PROOF. Consider the set

$$\mathcal{A} = \{ f/f : \mathcal{B}_1 \longrightarrow \mathcal{B}_2, \ f(0) = 0 \}$$

and introduce the generalized metric $d: \mathcal{A} \times \mathcal{A} \to [0, \infty]$ as follows:

$$d(f,g) = \inf\{\omega \in (0,\infty) : \mathcal{N}(f(x) - g(x), s) \ge \mathcal{N}'(\omega \ L(x,0), s), x \in \mathcal{B}_1, s > 0\}.$$
(137)

It is easy to show that (\mathcal{A}, d) is complete with respect to the defined metric. Let us define the linear mapping $U : \mathcal{A} \longrightarrow \mathcal{A}$ by

$$Uf(x) = \frac{1}{\ell_I^3} f_a(\ell_I x),$$

for all $x \in \mathcal{B}_1$. For given $f, f_a \in \mathcal{A}$ and

$$\mathcal{N}(f(x) - f_a(x), s) \ge \mathcal{N}'(\omega \ L(x, 0), s), x \in \mathcal{B}_1 \text{ and all } s > 0.$$

So, we have

$$\mathcal{N}(f(x) - f_a(x), s) = \mathcal{N}\left(\frac{1}{\ell_I^3}f(\ell_I x) - \frac{1}{\ell_I^3}f_a(\ell_I x), s\right)$$
$$\geq \mathcal{N}'\left(\frac{\omega}{\ell_I^3}L(\ell_I x, 0), s\right)$$
$$= \mathcal{N}'\left(\mathcal{L}\omega L(x, 0), s\right)$$

for all $x \in \mathcal{B}_1$ and s > 0, that is,

$$d(Uf, Uf_a) \leq \mathcal{L}d(f, f_a), \quad \text{for all} \quad f, f_a \in \mathcal{A}.$$

This implies U is a strictly contractive mapping on \mathcal{A} with Lipschitz constant \mathcal{L} .

For the case I = 0, it follows from (137),(97) and (135), we reach

$$\mathcal{N}\left(Uf(x) - f(x), s\right) \ge \mathcal{N}'\left(\mathcal{L}\ L(x, 0), s\right), \quad x \in \mathcal{B}_1, s > 0.$$
(138)

Hence,

$$d(Uf, f) \le \mathcal{L}^{1-0}, \qquad f \in \mathcal{A}.$$
(139)

For the case I = 1, it follows from (137),(111) and (135), we get

$$\mathcal{N}\left(f\left(x\right) - Uf(x), s\right) \ge \mathcal{N}'\left(L(x, 0), s\right), \qquad x \in \mathcal{B}_1, s > 0.$$
(140)

Thus, we obtain

$$d(f, Uf) \le \mathcal{L}^{1-1}, f \in \mathcal{A}.$$
(141)

Hence, from (139) and (141), we arrive

$$d(Uf, f) \le \mathcal{L}^{1-I}, \qquad f \in \mathcal{A}, \tag{142}$$

where I = 0, 1. Hence, property (FP1) holds. It follows from property (FP2) that there is a fixed point C of U in A such that

$$\mathcal{C}(x) = \lim_{N \to \infty} \frac{1}{\ell_I^{3N}} f(\ell_I^{3N} x), \tag{143}$$

for all $x \in \mathcal{B}_1$. In order to show that \mathcal{C} satisfies (1), the proof is similar lines to that of 5.1 By property (FP3), \mathcal{C} is the unique fixed point of U in the set

$$\Delta = \{ \mathcal{C} \in \mathcal{A} : d(f, \mathcal{C}) < \infty \},\$$

such that

$$\mathcal{N}\left(f(x) - \mathcal{C}(x), s\right) \geq \mathcal{N}'\left(\omega L(x, 0), s\right), \qquad x \in \mathcal{B}_1, s > 0.$$

Finally, by property (FP4), we obtain

$$\mathcal{N}(f(x) - \mathcal{C}(x), s) \ge \mathcal{N}'(f(x) - Uf(x), s), \qquad x \in \mathcal{B}_1, s > 0.$$

This implies

$$\mathcal{N}(f(x) - \mathcal{C}(x), s) \ge \mathcal{N}'\left(\frac{\mathcal{L}^{1-I}}{1 - \mathcal{L}}, s\right)$$

which yields

$$\mathcal{N}(f(x) - \mathcal{C}(x), s) \ge \mathcal{N}\left(\left(\frac{\mathcal{L}^{1-i}}{1-\mathcal{L}}\right)L(x, 0), s\right), x \in \mathcal{B}_1, s > 0.$$

So, the proof is completed.

Using Theorem 5.7, we prove the following corollary concerning the stabilities of (1).

Corollary 5.8. Assume that S and R are positive numbers. Let $f : \mathcal{B}_1 \longrightarrow \mathcal{B}_2$ be an odd function fulfilling the inequality

$$\mathcal{N}(F_k(x,y),s) \ge \begin{cases} \mathcal{N}'(S,s) \\ \mathcal{N}'(S\{||x||^R + ||y||^R\},s), & R \neq 3; \\ \mathcal{N}'(S\{||x||^R ||y||^R + \{||x||^{2R} + ||y||^{2R}\}\},s), & 2R \neq 3; \end{cases}$$
(144)

for all $x, y \in \mathcal{B}_1$, then there is only one cubic mapping $\mathcal{C} : \mathcal{B}_1 \longrightarrow \mathcal{B}_2$ satisfying the functional equation (1) and

$$\mathcal{N}(f(x) - \mathcal{C}(x), s) \ge \begin{cases} \mathcal{N}'(2^3 \ S, s \ \lambda | 2^3 - 1 |), \\ \mathcal{N}'(2^3 \ S | |x| |^R, s \ \lambda | 2^3 - 2^R |), \\ \mathcal{N}'(2^3 \ S | |x| |^{2R}, s \ \lambda | 2^3 - 2^{2R} |) \end{cases}$$
(145)

for all $x \in \mathcal{B}_1$.

PROOF. Let

$$L(x,y) = \begin{cases} S;\\ S(||x||^{R} + ||y||^{R});\\ S(||x||^{R}||y||^{R} + ||x||^{2R} + ||y||^{2R}); \end{cases}$$

for all $x, y \in \mathcal{B}_1$. Now

$$\mathcal{N}'\left(L(\ell_I^N x, \ell_I^N y), \ell_I^{3N} s\right) = \begin{cases} \mathcal{N}'\left(S, \ell_I^{3N} s\right) \\ \mathcal{N}'\left(S\left\{||\ell_I^N x||^R + ||\ell_I^N y||^R\right\}, \ell_I^{3N} s\right), \\ \mathcal{N}'\left(S\left\{||\ell_I^N x||^R ||\ell_I^N y||^R + ||\ell_I^N y||^{2R}\right\}, \ell_I^{3N} s\right) \\ + \left\{||\ell_I^N x||^{2R} + ||\ell_I^N y||^{2R}\right\}, \ell_I^{3N} s\right) \end{cases}$$
$$= \begin{cases} \rightarrow 1 \text{ as } N \rightarrow \infty, \\ \rightarrow 1 \text{ as } N \rightarrow \infty, \\ \rightarrow 1 \text{ as } N \rightarrow \infty. \end{cases}$$

Thus, (133) holds. But, we have

$$L(x,0) = \frac{2^3}{\lambda} L\left(\frac{x}{2},0\right)$$

for all $x \in \mathcal{B}_1$. With the property

$$\mathcal{N}'\left(\frac{1}{\ell_I^3}L(\ell_I x, 0), s\right) = \mathcal{N}'\left(\mathcal{L}L(x, 0), s\right).$$

Hence,

$$\mathcal{N}'(L(x,0),s) = \mathcal{N}'\left(\frac{2^3}{\lambda}L\left(\frac{x}{2},0\right),s\right) = \begin{cases} \mathcal{N}'\left(\frac{S}{\lambda},s\right),\\ \mathcal{N}'\left(\frac{S}{\lambda}\cdot2^R||x||^R,s\right),\\ \mathcal{N}'\left(\frac{S}{\lambda}\cdot2^R||x||^{2R},s\right) \end{cases}$$
(146)

for all $x \in \mathcal{B}_1$. It follows from (146),

$$\mathcal{N}'\left(\frac{1}{\ell_I^3}L(\ell_I x, 0), s\right) = \begin{cases} \mathcal{N}'\left(\frac{S}{\lambda}, \ell_I^3 s\right), \\ \mathcal{N}'\left(\frac{S}{\lambda}, \ell_I^3 s\right), \\ \mathcal{N}'\left(\frac{S}{\lambda}, \ell_I^3 s\right), \\ \mathcal{N}'\left(\frac{S}{\lambda}, \ell_I^3 s\right), \\ \mathcal{N}'\left(\frac{S}{\lambda}, \ell_I^3 s\right), \end{cases}$$

Hence, the inequality (136) holds for

$$\mathcal{L} = \ell_I^3 = \begin{cases} 2^3, & 2^{3-R}, & 2^{3-2R} & if \quad I = 0, \\ \frac{1}{2^3}, & \frac{1}{2^{3-R}}, & \frac{1}{2^{3-2R}} & if \quad I = 1, \end{cases}$$

Now, from (136), we prove the following cases for condition (i).

$$\begin{split} \mathcal{N}\left(f(x) - \mathcal{C}(x), s\right) & \mathcal{N}\left(f(x) - \mathcal{C}(x), s\right) \\ & \geq \mathcal{N}'\left(\left(\frac{\mathcal{L}^{1-I}}{1-\mathcal{L}}\right) L(x, 0), s\right) & \geq \mathcal{N}'\left(\left(\frac{\mathcal{L}^{1-I}}{1-\mathcal{L}}\right) L(x, 0), s\right) \\ & = \mathcal{N}'\left(\left(\frac{(2^{-3})^{1-0}}{1-2^{-3}}\right) \cdot \frac{S \cdot 2^3}{\lambda}, s\right) & = \mathcal{N}'\left(\left(\frac{(2^{3})^{1-1}}{1-2^{3}}\right) \cdot \frac{S \cdot 2^3}{\lambda}, s\right) \\ & = \mathcal{N}'\left(\left(\frac{2^{-3}}{1-2^{-3}}\right) \cdot \frac{S \cdot 2^3}{\lambda}, s\right) & = \mathcal{N}'\left(\left(\frac{1}{1-2^{3}}\right) \cdot \frac{S \cdot 2^3}{\lambda}, s\right) \\ & = \mathcal{N}'\left(\left(\frac{S \cdot 2^3}{\lambda(2^3-1)}\right), s\right) & = \mathcal{N}'\left(\left(\frac{S \cdot 2^3}{\lambda(1-2^3)}\right), s\right) \\ & = \mathcal{N}'\left((S \cdot 2^3), s\lambda(2^3-1)\right) & = \mathcal{N}'\left((S \cdot 2^3), s\lambda(1-2^3)\right) \end{split}$$

Also, from (136), we prove the following cases for condition (ii).

$$\begin{split} \mathcal{N}\left(f(x) - \mathcal{C}(x), s\right) & \qquad \mathcal{N}\left(f(x) - \mathcal{C}(x), s\right) \\ & \geq \mathcal{N}'\left(\left(\frac{\mathcal{L}^{1-i}}{1-\mathcal{L}}\right) L(x, 0), s\right) \\ & = \mathcal{N}'\left(\left(\frac{(2^{R-3})^{1-0}}{1-2^{R-3}}\right) \cdot \frac{S \ 2^3}{\lambda \ 2^R} ||x||^R, s\right) \\ & = \mathcal{N}'\left(\left(\frac{2^{R-3}}{1-2^{R-3}}\right) \cdot \frac{S \ 2^3}{\lambda \ 2^R} ||x||^R, s\right) \\ & = \mathcal{N}'\left(\left(\frac{2^{R-3}}{1-2^{R-3}}\right) \cdot \frac{S \ 2^3}{\lambda \ 2^R} ||x||^R, s\right) \\ & = \mathcal{N}'\left(\left(\frac{2^{R}}{2^{3}-2^{R}}\right) \cdot \frac{S \ 2^3}{\lambda \ 2^R} ||x||^R, s\right) \\ & = \mathcal{N}'\left(\left(\frac{2^{R}}{2^{R}-2^{3}}\right) \cdot \frac{S \ 2^3}{\lambda \ 2^R} ||x||^R, s\right) \\ & = \mathcal{N}'\left(S \ 2^3 ||x||^R, s\lambda(2^3 - 2^R)\right) \\ \end{split}$$

Finally, the proof of (136) for condition (iii) is similar to that of condition (ii). Hence the proof is complete.

Theorem 5.9. Let $f : \mathcal{B}_1 \longrightarrow \mathcal{B}_2$ be an odd function fulfilling the inequality (114), for all $x, y \in \mathcal{B}_1$ and s > 0, where $L : \mathcal{B}_1^2 \longrightarrow [0, \infty)$ with the condition

$$\lim_{N \to \infty} \mathcal{N}' \left(L(\ell_I^N x, \ell_I^N y), \ell_I^{4N} \right) = 1$$
(147)

where

$$\ell_{I} = \begin{cases} k & if \quad I = 0, \\ \frac{1}{k} & if \quad I = 1 \end{cases}$$
(148)

holds for all $x, y \in \mathcal{B}_1$. Assume that there exists $\mathcal{L} = \mathcal{L}(I)$ such that the function

$$L(x,0) = \frac{1}{k}L\left(\frac{x}{k},0\right)$$

with the property

$$\mathcal{N}'\left(\frac{1}{\ell_I^4}L(\ell_I x, 0), s\right) = \mathcal{N}'\left(\mathcal{L}L(x, 0), s\right)$$
(149)

for all $x \in \mathcal{B}_1$ and all s > 0. Then there is only one quartic mapping $\mathcal{Q} : \mathcal{B}_1 \longrightarrow \mathcal{B}_2$ satisfying the functional equation (1) and

$$\mathcal{N}\left(f(x) - \mathcal{Q}(x), s\right) \ge \mathcal{N}'\left(\frac{\mathcal{L}^{1-I}}{1 - \mathcal{L}}L(x, 0), s\right),\tag{150}$$

for all $x \in \mathcal{B}_1$.

PROOF. The proof of the theorem is similar lines to that of Theorem 5.7 by defining

$$Uf(x) = \frac{1}{\ell_I^4} f_a(\ell_I x),$$

for all $x \in \mathcal{B}_1$.

Using Theorem 5.9, we prove the following corollary concerning the stabilities of (1).

Corollary 5.10. Assume that S and R are positive numbers. Let $f : \mathcal{B}_1 \longrightarrow \mathcal{B}_2$ be an even function fulfilling the inequality

$$\mathcal{N}(F_k(x,y),s) \ge \begin{cases} \mathcal{N}'(S,s) \\ \mathcal{N}'(S\{||x||^R + ||y||^R\},s), & R \neq 4; \\ \mathcal{N}'(S\{||x||^R ||y||^R + \{||x||^{2R} + ||y||^{2R}\}\},s), & 2R \neq 4; \end{cases}$$
(151)

for all $x, y \in \mathcal{B}_1$, then there is only one quartic mapping $\mathcal{Q} : \mathcal{B}_1 \longrightarrow \mathcal{B}_2$ satisfying the functional equation (1) and

$$\mathcal{N}(f(x) - \mathcal{Q}(x), s) \geq \begin{cases} \mathcal{N}'(k^4 \ S, 2 \ s|k^4 - 1|), \\ \mathcal{N}'(k^4 \ S||x||^R, 2 \ s|k^4 - k^R|), \\ \mathcal{N}'(k^4 \ S||x||^{2R}, 2 \ s|k^4 - k^{2R}|) \end{cases}$$
(152)

for all $x \in \mathcal{B}_1$.

J

Theorem 5.11. Let $f : \mathcal{B}_1 \longrightarrow \mathcal{B}_2$ be a function fulfilling the inequality (124), for all $x, y \in \mathcal{B}_1$ and all s > 0, where $L : \mathcal{B}_1^2 \longrightarrow [0, \infty)$ with the conditions (133) and (147) where ℓ_I are respectively defined in (134) and (148) holds for all $x, y \in \mathcal{B}_1$. Assume that there exists $\mathcal{L} = \mathcal{L}(I)$ such that the function

$$L(x,0) = \frac{2^3}{\lambda} L\left(\frac{x}{2},0\right) \quad and \quad L(x,0) = \frac{1}{k} L\left(\frac{x}{k},0\right)$$

with the property

$$\mathcal{N}'\left(\frac{1}{\ell_I^3}L(\ell_I x, 0), s\right) = \mathcal{N}'\left(\mathcal{L}L(x, 0), s\right), \ \mathcal{N}'\left(\frac{1}{\ell_I^4}L(\ell_I x, 0), s\right) = \mathcal{N}'\left(\mathcal{L}L(x, 0), s\right)$$
(153)

for all $x \in \mathcal{B}_1$ and s > 0.. Then there is only one cubic mapping $\mathcal{C} : \mathcal{B}_1 \longrightarrow \mathcal{B}_2$ and only one quartic mapping $\mathcal{Q} : \mathcal{B}_1 \longrightarrow \mathcal{B}_2$ satisfying the functional equation (1) and

$$\mathcal{N}\left(f(x) - \mathcal{Q}(x), s\right) \ge \mathcal{N}'\left(\left(\frac{\mathcal{L}^{1-I}}{1 - \mathcal{L}}\right)\left(L(x, 0) + L(-x, 0)\right), s\right)$$
(154)

for all $x \in \mathcal{B}_1$.

Using Theorem 5.11, we prove the following corollary concerning the stabilities of (1).

Corollary 5.12. Assume that S and R are positive numbers. Let $f : \mathcal{B}_1 \longrightarrow \mathcal{B}_2$ be an even function fulfilling the inequality

$$\mathcal{N}(F_k(x,y),s) \ge \begin{cases} \mathcal{N}'(S,s) \\ \mathcal{N}'(S\{||x||^R + ||y||^R\},s), & R \neq 3,4; \\ \mathcal{N}'(S\{||x||^R ||y||^R + \{||x||^{2R} + ||y||^{2R}\}\},s), & 2R \neq 3,4; \end{cases}$$
(155)

for all $x, y \in \mathcal{B}_1$, then there is only one quartic mapping $\mathcal{Q} : \mathcal{B}_1 \longrightarrow \mathcal{B}_2$ satisfying the functional equation (1) and

$$\mathcal{N}(f(x) - \mathcal{Q}(x), s) \geq \begin{cases} \mathcal{N}'([2^3 + k^4] S, s[\lambda|2^3 - 1| + 2|k^4 - 1|]), \\ \mathcal{N}'([2^3 + k^4] S||x||^R, s[\lambda|2^3 - 2^R| + 2|k^4 - k^R|]), \\ \mathcal{N}'([2^3 + k^4] S||x||^{2R}, s[\lambda|2^3 - 2^{2R}| + 2|k^4 - k^{2R}|]), \end{cases}$$
(156)

for all $x \in \mathcal{B}_1$.

References

- J. Aczel and J. Dhombres, Functional Equations in Several Variables, Cambridge Univ. Press, 1989.
- [2] T. Aoki, On the stability of the linear transformation in Banach spaces, J. Math. Soc. Japan, 2 (1950), 64-66.
- [3] M. Arunkumar, Three dimensional quartic functional equation in fuzzy normed spaces, Far East J. App. Math., 41(2)(2010), 88-94.

- [4] M. Arunkumar and S. Karthikeyan, Solution and stability of n-dimensional mixed type additive and quadratic functional equation, Far East J. App. Math., 54(1)(2011), 47-64.
- [5] M. Arunkumar and J. M. Rassias, On the generalized Ulam-Hyers stability of an AQ-mixed type functional equation with counter examples, Far East J. App. Math., 71(2)(2012), 279-305.
- [6] M. Arunkumar, Solution and stability of modified additive and quadratic functional equation in generalized 2-normed spaces, Inter. J. Math. Sci. Engin. App., 7(1)(2013), 383-391.
- [7] M. Arunkumar and P. Agilan, Additive quadratic functional equation are Stable in Banach space: A fixed point approach, Inter. J. Pure App. Math., 86(6)(2013), 951-963.
- [8] M. Arunkumar and P. Agilan, Additive quadratic functional equation are stable in Banach space: A direct method, Far East J. App. Math., 80(1)(2013), 105-121.
- [9] M. Arunkumar, Perturbation of n-dimensional AQ-mixed type functional equation via Banach spaces and Banach algebra: Hyers direct and alternative fixed point methods, Inter. J. Adv. Math. Sci., 2(1)(2014), 34-56.
- [10] M. Arunkumar and T. Namachivayam, Stability of n-dimensional quadratic functional equation in fuzzy normed spaces: Direct and fixed point methods, Proc. Inter. Conf. Math. Meth. Comput., Jamal Academic Research Journal an Interdisciplinary, (2014), 288-298.
- [11] M. Arunkumar and P. Agilan, Stability of a AQC functional equation in fuzzy normed spaces: Direct method, Jamal Academic Research Journal an Interdisciplinary, (2015), 78-86.
- [12] M. Arunkumar, P. Agilan and C. Devi Shyamala Mary, Permanence of A generalized AQ functional equation in quasi-Beta normed spaces, Inter. J. Pure App. Math., 101(6)(2015), 1013-1025.
- [13] M. Arunkumar, G. Shobana and S. Hemalatha, Ulam-Hyers, Ulam-Rassias, Ulam-Grassias, Ulam-Jrassias stabilities of an additive-Quadratic mixed type functional equation in Banach spaces, Inter. J. Pure App. Math., 101(6)(2015), 1027-1040.
- [14] M. Arunkumar, A. Bodaghi, T. Namachivayam and E. Sathya, A new type of the additive functional equations on intuitionistic fuzzy normed spaces, Commun. Korean Math. Soc., 32(4)(2017), 915-932.
- [15] M. Arunkumar and C. Devi Shyamala Mary, Generalized Hyers-Ulam stability of additivequadratic-cubic-quartic functional equation in fuzzy normed spaces: A direct method, Inter. J. Math. App., 4(4)(2016), 1-16.
- [16] M. Arunkumar and C. Devi Shyamala Mary, Generalized Hyers-Ulam stability of additivequadratic-cubic-quartic functional equation in fuzzy normed spaces: A fixed point approach, Inter. J. Math. App., 4(4)(2016), 16-32.
- [17] K. T. Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets Syst., 20 (1986), 87-96.
- [18] T. Bag and S. K. Samanta, Finite dimensional fuzzy normed linear spaces, J. Fuzzy Math., 11(3)(2003), 687-705.
- [19] T. Bag and S. K. Samanta, Fuzzy bounded linear operators, Fuzzy Sets Syst., 151(2005), 513-547.
- [20] A. Bodaghi, Intuitionistic fuzzy stability of the generalized forms of cubic and quartic functional equations, J. Intel. Fuzzy Syst., 30(2016), 2309-2317.
- [21] A. Bodaghi, D. Kang anf J. M. Rassias, The mixed cubic-quartic functional equation, https://doi.org/10.1515/aicu-2015-0014.
- [22] A. Bodaghi, C. Park and J. M. Rassias, Fundamental stabilities of the nonic functional equation in intuitionistic fuzzy normed spaces, Commun. Korean Math. Soc., 31(4)(2016), 729-743.
- [23] A. Bodaghi, M. Arunkumar, S. Karthikeyan and E. Sathya, Generalized Hyers-Ulam stability of functional equation deriving from additive and quadratic functions in fuzzy Banach space via two different techniques, Malaya J. Mate., 6(1)(2018), 242-260.

- [24] L. Cadariu and V. Radu, Fixed points and the stability of Jensen's functional equation, J. Ineq. Pure Appl. Math., 4(2003), Article 4.
- [25] L. Cadariu and V. Radu, Fixed points and the stability of quadratic functional equations, An. Univ. Timisoara, Ser. Mat. Inform., 41(2003), 25-48.
- [26] L. Cadariu and V. Radu, On the stability of the Cauchy functional equation: A fixed point approach, Grazer Math. Ber., 346(2004), 43-52.
- [27] E. Castillo, A. Iglesias and R. Ruiz-coho, *Functional equations in applied sciences*, Elsevier, B. V. Amesderdam, 2005.
- [28] S. C. Cheng and J.N. Mordeson, Fuzzy linear operator and fuzzy normed linear spaces, Bull. Calcutta Math. Soc., 86(1994), 429-436.
- [29] S. Czerwik, Functional equations and inequalities in several variables, World Scientific, River Edge, NJ, 2002.
- [30] P. Găvruta, A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl., 184(1994), 431-436.
- [31] M. Eshaghi Gordji, S. Zolfaghari, J. M. Rassias and M. B. Savadkouhi, Solution and stability of a ,ixed type cubic and quartic functional equation in quasi-Banach spaces, Abst. App. Anal., Volume 2009, Article ID 417473, 14 pages doi:10.1155/2009/417473.
- [32] M. E. Gordji and M. B. Savadkouhi, Stability of mixed type cubic and quartic functional equations in random normed spaces, J. Ineq. App, doi:10.1155/2009/527462.
- [33] H. Azadi Kenary, S. Y. Jang and C. Park, A fixed point approach to the Hyers-Ulam stability of a functional equation in various normed spaces, Fixed Point Theory App., doi:10.1186/1687-1812-2011-67.
- [34] D. H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci., 27(1941), 222-224.
- [35] D. H. Hyers, G. Isac and Th. M. Rassias, Stability of functional equations in several variables, Birkhauser, Basel, 1998.
- [36] K. W. Jun and H. M. Kim, On the stability of an n-dimensional quadratic and additive type functional equation, Math. Ineq. App., 9(1)(2006), 153-165.
- [37] S. M. Jung, Hyers-Ulam-Rassias stability of functional equations in mathematical analysis, Hadronic Press, Palm Harbor, 2001.
- [38] L. Maligranda, A result of Tosio Aoki about a generalization of Hyers-Ulam stability of additive functions- a question of priority, Aequ. Math., 75(2008), 289-296.
- [39] B. Margolis and J. B. Diaz, A fixed point theorem of the alternative for contractions on a generalized complete metric space, Bull. Amer. Math. Soc., 126 (1968), 305-309.
- [40] A. K. Mirmostafaee and M. S. Moslehian, Fuzzy versions of Hyers-Ulam-Rassias theorem, Fuzzy Sets Syst., 159(6)(2008), 720-729.
- [41] A. K. Mirmostafaee, M. Mirzavaziri and M. S. Moslehian, Fuzzy stability of the Jensen functional equation, Fuzzy Sets Syst., 159(6)(2008), 730-738.
- [42] A. K. Mirmostafaee and M. S. Moslehian, Fuzzy approximately cubic mappings, Infor. Sci., 178(19)(2008), 3791-3798.
- [43] A. K. Mirmostafaee and M. S. Moslehian, Fuzzy almost quadratic functions, Res. Math., 52(1-2)(2008), 161-177.
- [44] A. Najati and Th.M. Rassias, Stability of a mixed functional equation in several variables on Banach modules, Nonlinear Anal.-TMA, in press.
- [45] P. Narasimman and A. Bodaghi, Solution and stability of a mixed type functional equation, Filomat., 31(5)(2017), 1229-1239.

- [46] C. Park, Orthogonal stability of a cubic-quartic functional equation, J. Nonlin. Sci. App., 5(1)(2012).
- [47] S. Pinelas, M. Arunkumar, N. Mahesh Kumar and E.Sathya, Stability of general quadraticcubic-quartic functional equation in quasi Beta Banach space via two dissimilar methods, Malaya J. Mat., 6(1)(2018), 113-128.
- [48] M. J. Rassias, M. Arunkumar and S. Ramamoorthi, Stability of the Leibniz additive-quadratic functional equation in quasi- β normed spaces: direct and fixed point methods, J. Conc. App. Math., 14(2014), 22-46.
- [49] J. M. Rassias, On approximately of approximately linear mappings by linear mappings, J. Funct. Anal., 46(1982) 126-130.
- [50] J. M. Rassias, Solution of the Ulam problem for cubic mappings, An. Univ. Timisoara Ser. Mat. Inform., 38(2000), 121-132.
- [51] J. M. Rassias, Solution of the Ulam stability problem for quartic mappings, Glasnik Math., 34(2), (1999), 243-252.
- [52] J. M. Rassias, M. Arunkumar, E. Sathya and N. Mahesh Kumar, Solution and stability of a ACQ functional equation in generalized 2-normed spaces, Intern. J. Fuzzy Math. Arch., 7(2)(2015), 213-224.
- [53] J. M. Rassias, M. Arunkumar and T. Namachivayam, Stability of the leibniz additive-quadratic functional equation in Felbin's and rRandom normed spaces: A direct method, Jamal Academic Research J. an Interdisciplinary, (2015), 102-110.
- [54] J. M. Rassias, M. Arunkumar, E.sathya and N. Mahesh Kumar, Generalized Ulam-Hyers stability of a (AQQ): additive-quadratic-quartic functional equation, Malaya J. Mat., 5(1)(2017), 122-142.
- [55] J. M. Rassias, M. Arunkumar and P.Agilan, Solution and two types of Ulam-Hyers stability of n-dimensional cubic-quartic functional equation in intuitionistic normed spaces, Malaya J. Mat., 6(1)(2018), 213-229.
- [56] Th. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc., 72(1978), 297-300.
- [57] Th. M. Rassias, On a modified Hyers-Ulam sequence, J. Math. Anal. Appl., 158(1)(1991), 106-113.
- [58] Th. M. Rassias, The problem of S. M. Ulam for approximately multiplicative mappings, J. Math. Anal. Appl., 246(2000), 352-378.
- [59] Th. M. Rassias, Functional equations, inequalities and applications, Kluwer Acedamic Publishers, Dordrecht, Bostan London, 2003.
- [60] K. Ravi, J. M. Rassias, M. Arunkumar and R. Kodandan, Stability of a generalized mixed type additive, quadratic, cubic and quartic functional equation, J. Inequal. Pure Appl. Math., 10(4)(2009), Article 114, 29 pp.
- [61] F. Skof, Proprieta locali e approssimazione di operatori, Rend. Sem. Mat. Fis. Milano, 53(1983), 113-129.
- [62] S. M. Ulam, Problems in modern mathematics, Science Editions, Wiley, NewYork, 1964.
- [63] J. Z. Xiao and X. H. Zhu, Fuzzy normed spaces of operators and its completeness, Fuzzy Sets Syst., 133(2003) 389-399.
- [64] T. Z. Xu and J. M. Rassias, M. J. Rassias and W. X. Xu, A fixed point approach to the stability of quintic and sextic functional equations in quasi-β-normed spaces, J. Ineq. Appl., 2010, Art. ID 423231, 23 pp.
- [65] T. Z. Xu and J. M. Rassias, Approximate septic and octic mappings in quasi-β-normed spaces,
 J. Comput. Anal. App., 15(6)(2013), 1110 1119, 2013, copyright 2013 Eudoxus Press, LLC.

[66] S. Zolfaghari, Approximation of mixed type functional equations in p-Banach spaces, J. Nonlinear Sci. App., 3(2)(2010), 110-122.

PEDAGOGICAL DEPARTMENT E.E., SECTION OF MATHEMATICS AND INFORMATICS, NA-TIONAL AND CAPODISTRIAN UNIVERSITY OF ATHENS, 4, AGAMEMNONOS STR., AGHIA PARASKEVI, ATHENS 15342, GREECE.

Email address: jrassias@primedu.uoa.gr

Department of Mathematics, Government Arts College, Tiruvannamalai - 606 603, TamilNadu, India.

Email address: drarun4maths@gmail.com

Department of Mathematics, Shanmuga Industries Arts and Science College, Tiruvannamalai - 606 603, TamilNadu, India.

Email address: sathya24mathematics@gmail.com