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Non-stabilities of mixed type Euler-Lagrange

k-cubic-quartic functional equation in various

normed spaces

J. M. Rassias, M. Arunkumar∗, and E. Sathya

Abstract. In this paper, we introduce and examine the generalized Ulam-Hyers

stability of fixed Euler-Lagrange k-Cubic-Quartic functional Equation

f(x+ ky) + f(kx+ y) + f(x− ky) + f(y − kx)

= k2 [2f(x+ y) + f(x− y) + f(y − x)] + 2(k4 − 1)[f(x) + f(y)]

+
k2

4
(k2 − 1)[f(2x) + f(2y)]

where k is a real number with k 6= 0,±1 in various Banach spaces with the help

of two different methods.

1. Introduction

A fundamental question in the theory of functional equations is as follows:

When is it true that a function that approximately satisfies a functional equation

must be close to an exact solution of the equation?

If the problem allows a solution, we say that the equation is stable. The first

stability problem concerning of group homomorphisms was introduced by Ulam [62]

in 1940. The famous Ulam stability problem was partially solved by Hyers [34] for

the linear functional equation of Banach spaces. Hyers theorem was generalized by

Aoki [2] for additive mappings and by Rassias [56], [49] for linear mappings by

considering an unbounded Cauchy difference. A generalization of the Rassias the-

orem was obtained by Gavruta [30] by replacing the unbounded Cauchy difference

by a general control function in the spirit of Rassias approach. The terminology
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Hyers-Ulam-Rassias stability originates from these historical backgrounds and this

terminology is also applied to the cases of other functional equations.

Cadariu and Radu [24] applied the fixed point method for investigation of the

Jensen functional equation. They could present a short and a simple proof (different

from the direct method initiated by Hyers in 1941) for the generalized Hyers-Ulam

stability of the Jensen functional equation, quadratic functional equation [25] and

additive functional equation [26]. Their methods are a powerful tool for studying

the stability of several functional equations.

During the last decades, the stability problems of several functional equations

have been extensively investigated by a number of authors (c.f. [3, 4, 5, 6, 7, 8,

9, 10, 11, 12, 13, 14, 15, 16, 20, 21, 22, 23, 29, 32, 36, 45, 47, 48, 52, 53,

54, 55, 64, 65, 66]) and references therein.

The solution and stability of following cubic-quartic functional equations

f(x+ kx) + f(x− ky)

= k2 {f(x+ y) + f(x− y)} − 2(k2 − 1)f(x)− 2k2(k2 − 1)f(y)

+
k2(k2 − 1)

4
f(2y); k 6= 0,±1,

f(x+ 2y) + f(x− 2y) = 4(f(x+ y) + f(x− y))− 24f(y)− 6f(x) + 3f(2y)

and

f(2x+ y) + f(2x− y)

= 3f(x+ y) + f(−x− y) + 3f(x− y) + f(y − x)

+ 18f(x) + 6f(−x)− 3f(y)− 3f(−y)

were introduced and investigated by [21, 31, 46]

In this paper, we introduce and examine the generalized Ulam-Hyers stability of

Mixed Euler-Lagrange k−Cubic-Quartic functional Equation

f(x+ ky) + f(kx+ y) + f(x− ky) + f(y − kx)

= k2 [2f(x+ y) + f(x− y) + f(y − x)]− 2(k4 − 1)[f(x) + f(y)]

+
k2

4
(k2 − 1)[f(2x) + f(2y)] (1)

where k is a real number with k 6= 0,±1 in various Banach spaces with the help of

two different methods.

2. Solution of the functional equation

In this section, we provide the solution of the functional equation (1) by consid-

ering A and B are real vector spaces.

Theorem 2.1. Let an odd f : A −→ B be a mapping satisfying (1), for all

x, y ∈ A, then f is cubic.
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Proof. Changing (x, y) by (0, 0) in (1), we arrive f(0) = 0. Replacing y by 0

in (1), we get

f(x) + f(kx) + f(x) + f(−kx) = k2 [2f(x) + f(x) + f(−x)]− 2(k4 − 1)f(x)

+
k2

4
(k2 − 1)f(2x) (2)

for all x ∈ A. Using oddness of f in (2), we obtain

2f(x) = 2k2f(x)− 2(k4 − 1)f(x) +
k2

4
(k2 − 1)f(2x) (3)

for all x ∈ A. It follows from (3) that

k2

4
(k2 − 1)f(2x) =

(
2− 2k2 + 2(k4 − 1)

)
f(x);

or

k2

4
(k2 − 1)f(2x) =

(
−2k2 + 2k4

)
f(x);

or

k2(k2 − 1)f(2x) = 23k2
(
k2 − 1

)
f(x) (4)

for all x ∈ A. Since k 6= 0,±1, the above equation yields

f(2x) = 23f(x) (5)

for all x ∈ A. Hence f is cubic. �

Theorem 2.2. Assume that f : A −→ B is an even mapping satisfying (1), for

all x, y ∈ A, then f is quartic.

Proof. Changing (x, y) by (0, 0) in (1), we arrive f(0) = 0. Replacing y by 0

in in (1), we get

f(x) + f(kx) + f(x) + f(−kx) = k2 [2f(x) + f(x) + f(−x)]− 2(k4 − 1)f(x)

+
k2

4
(k2 − 1)f(2x) (6)

for all x ∈ A. Using evenness of f in (6), we obtain

2f(x) + 2f(kx) = 4k2f(x)− 2(k4 − 1)f(x) +
k2

4
(k2 − 1)f(2x) (7)

for all x ∈ A. Using f(2x) = 24f(x) in (7), we have

2f(x) + 2f(kx) = 4k2f(x)− 2(k4 − 1)f(x) + 4k2(k2 − 1)f(x) (8)
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for all x ∈ A. It follows from (4) that

2f(kx) =
(
4k2 − 2(k4 − 1) + 4k2(k2 − 1)− 2

)
f(x)

or

2f(kx) = 2k4f(x) (9)

for all x ∈ A. It follows from above equation that

f(kx) = k4f(x) (10)

for all x ∈ A. Hence f is quartic. �

Hereafter, throughout this paper let us assume f : B1 −→ B2 by

Fk(x, y) = f(x+ ky) + f(kx+ y) + f(x− ky) + f(y − kx)

− k2 [2f(x+ y) + f(x− y) + f(y − x)]

+ 2(k4 − 1)[f(x) + f(y)]− k2

4
(k2 − 1)[f(2x) + f(2y)]

where k is a real number with k 6= 0,±1.

All the stability results are proved by Hyers and Radus Method by taking the

function f is odd, even and odd-even cases.

3. Stability in Banach space

In this section, we investigate the generalized Ulam - Hyers stability of the

functional equation (1) in Banach space. To prove stability results, let us take

B1 be a normed space and B2 be a Banach space.

3.1. Hyers Method.

Theorem 3.1. Let f : B1 −→ B2 be an odd function fulfilling the inequality

‖Fk(x, y)‖ ≤ L(x, y) (11)

for all x, y ∈ B1, where L : B2
1 −→ [0,∞) satisfies the condition

lim
N→∞

L(2NJx, 2NJy)

23NJ
= 0 (12)

for all x ∈ B1. Then there is only one cubic mapping C(x) : B1 −→ B2 satisfying

the functional equation (1) and

‖C(x)− f(x)‖ ≤ 1

λ

∞∑
M= 1−J

2

L(2MJx, 0)

23MJ
(13)

for all x ∈ B1 with J = ±1 and λ = 2k2(k2 − 1). The mapping C is defined by

C(x) = lim
N→∞

L(2NJx)

23NJ
(14)
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for all x ∈ B1.

Proof. Changing y by 0 in (11), we reach∥∥∥ f(x) + f(kx) + f(x) + f(−kx)− k2 [2f(x) + f(x) + f(−x)]

+2(k4 − 1)f(x)− k2

4
(k2 − 1)f(2x)

∥∥∥∥ ≤ L(x, 0) (15)

for all x ∈ B1. Using oddness of f in (15), we obtain∥∥∥∥2f(x)− 2k2f(x) + 2(k4 − 1)f(x)− k2

4
(k2 − 1)f(2x)

∥∥∥∥ ≤ L(x, 0); or∥∥∥∥−k24 (k2 − 1)f(2x) + 2k2
(
k2 − 1

)
f(x)

∥∥∥∥ ≤ L(x, 0) (16)

for all x ∈ B1. It follows from (16) and k 6= 0,±1,∥∥∥∥f(2x)

23
− f(x)

∥∥∥∥ ≤ L(x, 0)

2k2 (k2 − 1)
(17)

for all x ∈ B1. Let λ = 2k2 (k2 − 1) in above inequality, we arrive∥∥∥∥f(2x)

23
− f(x)

∥∥∥∥ ≤ L(x, 0)

λ
(18)

for all x ∈ B1. Changing x by 2x and multiplying by
1

23
in (18), we get∥∥∥∥f(22x)

26
− f(2x)

23

∥∥∥∥ ≤ L(2x, 0)

λ · 23
(19)

for all x ∈ B1. Using triangle inequality on (18) and (19), we have∥∥∥∥f(22x)

26
− f(x)

∥∥∥∥ =

∥∥∥∥f(22x)

26
− f(2x)

23
+
f(2x)

23
− f(x)

∥∥∥∥
≤
∥∥∥∥f(2x)

23
− f(x)

∥∥∥∥+

∥∥∥∥f(22x)

26
− f(2x)

23

∥∥∥∥
≤ L(x, 0)

λ
+
L(2x, 0)

λ · 23
=

1

λ

[
L(x, 0) +

L(2x, 0)

23

]
(20)

for all x ∈ B1. Generalizing for a positive integer N , we obtain∥∥∥∥f(2Nx)

23N
− f(x)

∥∥∥∥ ≤ 1

λ

N−1∑
M=0

L(2Mx, 0)

23M
(21)
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for all x ∈ B1. Hence

{
f(2Nx)

23N

}
is a Cauchy sequence and it converges to a point

C(x) ∈ B2. Indeed, replacing x by 2Pw and dividing by 23P in (21), we get∥∥∥∥f(2N+Px)

23(N+P )
− f(2Px)

23P

∥∥∥∥ =
1

2P

∥∥∥∥f(2N · 2Px)

23N
− f(2Px)

∥∥∥∥
≤ 1

λ

N−1∑
M=0

L(2M+Px, 0)

23(M+P )

−→ 0 as P −→ ∞ (22)

for all x ∈ B1. Thus, we define mapping C : B1 −→ B2 by

C(x) = lim
N−→∞

f(2Nx)

23N

for all x ∈ B1. Letting limit N →∞ in (21) and using the definition of C, we get∥∥∥∥ lim
N−→∞

f(2Nx)

23N
− f(x)

∥∥∥∥ ≤ 1

λ

∞∑
M=0

L(2Mx, 0)

23M
=⇒ ‖C(x)− f(x)‖ ≤ 1

λ

∞∑
M=0

L(2Mx, 0)

23M

for all x ∈ B1. Thus (13) holds for J = 1. Now, to show that C satisfies (1), changing

(x, y) by (2Nx, 2Ny) and divided by 23N in (11), we reach

1

23N

∥∥Fk(2Nx, 2Ny)
∥∥ ≤ 1

23N
L(2Nx, 2Ny)

for all x, y ∈ B1. Approaching N → ∞ and using the definition of C, (12) in

the above inequality, we can see that C satisfies the functional equation (1) for all

x ∈ B1. In order to prove the existence of C is unique, assume that C ′ be another

cubic mapping satisfying (1) and (13). Now,

‖C(x)− C ′(x)‖ =
1

23P

∥∥C(2Px)− C ′(2Px)
∥∥

=
1

23P

∥∥C(2Px)− f(2Px) + f(2Px)− C ′(2Px)
∥∥

=
1

23P

{∥∥C(2Px)− f(2Px)
∥∥+

∥∥C ′(2Px)− f(2Px)
∥∥}

≤ 2

λ

∞∑
M=0

L(2M+Px, 0)

23(M+P )

−→ 0 as P −→ ∞

for all x ∈ B1. This proves that C(x) = C ′(x), for all x ∈ B1. Thus, C(x) is unique.

Hence, the theorem holds for J = 1.

Replacing x by
x

2
in (18), we achieve∥∥∥f(x)− 23f

(x
2

)∥∥∥ ≤ 23L
(
x
2
, 0
)

λ
(23)
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for all x ∈ B1. Again replacing x by
x

2
and multiply by 23 in (23), we arrive∥∥∥23f

(x
2

)
− 26f

( x
22

)∥∥∥ ≤ 26L
(
x
22
, 0
)

λ
(24)

for all x ∈ B1. Using triangle inequality on (23) and (24), we have∥∥∥f(x)− 26f
( x

22

)∥∥∥ ≤ ∥∥∥f(x)− 23f
(x

2

)∥∥∥+
∥∥∥23f

(x
2

)
− 26L

( x
22

)∥∥∥
≤

23L
(
x
2
, 0
)

λ
+

26L
(
x
22
, 0
)

λ

=
1

λ

[
23L

(x
2
, 0
)

+ 26L
( x

22
, 0
)]

(25)

for all x ∈ B1. Generalizing for a positive integer N , we obtain∥∥∥f(x)− 23Nf
( x

2N

)∥∥∥ ≤ 1

λ

N−1∑
M=1

2ML
( x

2M
, 0
)

=
1

λ

N−1∑
M=1

2ML
( x

2M
, 0
)

(26)

for all x ∈ B1. The rest of the proof is similar ideas to that of case J = 1. Thus the

theorem is true for J = −1. Hence the proof is complete. �

The following corollary is an immediate consequence of Theorem 3.1 concerning

the stabilities of (1).

Corollary 3.2. Assume that S and R are positive numbers. Let f : B1 −→ B2
be an odd function fulfilling the inequality

‖Fk(x, y)‖ ≤


S;

S
(
||x||R + ||y||R

)
; R 6= 3

S
(
||x||R||y||R + ||x||2R + ||y||2R

)
; 2R 6= 3

(27)

for all x ∈ B1. Then there is only one cubic mapping C : B1 −→ B2 satisfying the

functional equation (1) and

‖C(x)− f(x)‖ ≤



S

λ|23 − 1|
;

S||x||R

λ|23 − 2R|
;

S||x||2R

λ|23 − 22R|
;

(28)

for all x ∈ B1.

The following example is to illustrate that the functional equation (1) is not

stable for R = 3 in Corollary 3.2.

Example 3.1. Let L : R→ R be a function defined by

L(x) =

{
Tx3, if |x| <1

T, otherwise
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where T > 0 is a constant, and define a function f : R→ R by

f(x) =
∞∑

M=0

L(2Mx)

8M
for all x ∈ R.

Then f satisfies the functional inequality∣∣f(x+ ky) + f(kx+ y) + f(x− ky) + f(y − kx)− k2 [2f(x+ y) + f(x− y) + f(y − x)]

+2(k4 − 1)[f(x) + f(y)]− k2

4
(k2 − 1)[f(2x) + f(2y)]

∣∣∣∣
≤ 4T × 82(9k4 − 5k2)

7

(
|x|3 + |y|3

)
(29)

for all x, y ∈ R. Then there are not a cubic mapping such as C : R → R and a

constant B > 0 such that

|f(x)− C(x)| ≤ B|x|3 for all x ∈ R. (30)

Proof. From the definition of f(x), we have

|f(x)| ≤
∞∑

M=0

|L(2Mx)|
|8M |

=
∞∑
n=0

T

8M
=

8T

7
.

Thus, f is bounded. Now, we are going to prove that f satisfies (29).

If x = y = 0 then (29) is trivial. If |x|3 + |y|3 ≥ 1

8
, then the left hand side of

(29) is less than
4T (9k4 − 5k2)

7
. Now suppose that 0 < |x|3 + |y|3 < 1

8
. Then there

is a positive integer b such that

1

8b+2
≤ |x|3 + |y|3 < 1

8b+1
, (31)

so that 8b|x|3 < 1

8
, 8b|y|3 < 1

8
, and consequently

2b−1(x+ ky),2b−1(kx+ y), 2b−1(x− ky), 2b−1(y − kx), 2b−1(x+ y),

2b−1(x− y), 2b−1(y − x), 2b−1(x), 2b−1(y), 2b−1(2x), 2b−1(2y) ∈ (−1, 1).

Therefore for each M = 0, 1, . . . , b− 1, we have

2M(x+ ky), 2M(kx+ y), 2M(x− ky), 2M(y − kx), 2M(x+ y), 2M(x− y)2M(y − x),

2M(x), 2M(y), 2M(2x), 2M(2y) ∈ (−1, 1).

and

L(2M(x+ ky)) + L(2M(kx+ y)) + L(2M(x− ky)) + L(2M(y − kx))

− k2
[
2L(2M(x+ y)) + L(2M(x− y)) + L(2M(y − x))

]
+ 2(k4 − 1))[L(2M(x)) + L(2M(y))]− k2

4
(k2 − 1)[L(2M(2x)) + L(2M(2y))] = 0
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for M = 0, 1, . . . , k − 1. From the definition of f and (31), we obtain that∣∣∣f(x+ ky) + f(kx+ y) + f(x− ky) + f(y − kx)− k2 [2f(x+ y) + f(x− y) + f(y − x)]

+ 2(k4 − 1)[f(x) + f(y)]− k2

4
(k2 − 1)[f(2x) + f(2y)]

∣∣∣
≤

∞∑
M=0

1

8M

∣∣∣L(2M(x+ ky)) + L(2M(kx+ y)) + L(2M(x− ky)) + L(2M(y − kx))

− k2
[
2L(2M(x+ y)) + L(2M(x− y)) + L(2M(y − x))

]
+ 2(k4 − 1))[L(2M(x)) + L(2M(y))]− k2

4
(k2 − 1)[L(2M(2x)) + L(2M(2y))]

∣∣∣
≤

∞∑
M=k

1

8M

∣∣∣L(2M(x+ ky)) + L(2M(kx+ y)) + L(2M(x− ky)) + L(2M(y − kx))

− k2
[
2L(2M(x+ y)) + L(2M(x− y)) + L(2M(y − x))

]
+ 2(k4 − 1))[L(2M(x)) + L(2M(y))]− k2

4
(k2 − 1)[L(2M(2x)) + L(2M(2y))]

∣∣∣
≤

∞∑
M=k

1

8M
· 9k4 − 5k2

2
=

8

7
· 9k4 − 5k2

2
· 1

8b
=

4T × 82(9k4 − 5k2)

7

(
|x|3 + |y|3

)
.

Thus f satisfies (29) for all x, y ∈ R with 0 < |x|3 + |y|3 < 1

8
.

We claim that the cubic functional equation (1) is not stable for R = 3 in

Corollary 3.2. Suppose on the contrary that there exist a cubic mapping C : R→ R
and a constant B > 0 satisfying (30). Since f is bounded and continuous for all

x ∈ R, C is bounded on any open interval containing the origin and continuous at

the origin. In view of Theorem 3.1, C must have the form C(x) = cx3 for any x in

R. Thus, we obtain that

|f(x)| ≤ (B + |c|) |x|3. (32)

But we can choose a positive integer q with qT > B + |c| .

If x ∈
(
0, 1

2q−1

)
, then 2Mx ∈ (0, 1) for all M = 0, 1, . . . , q− 1 . For this x, we get

f(x) =
∞∑

M=0

L(2Mx)

8M
≥

q−1∑
M=0

T (2Mx)3

8M
= qTx3 > (B + |c|)x3

which contradicts (32). Therefore the cubic functional equation (1) is not stable in

sense of Ulam, Hyers and Rassias if R = 3, assumed in the inequality (28). �

Theorem 3.3. Let f : B1 −→ B2 be an even function fulfilling the inequality

‖Fk(x, y)‖ ≤ L(x, y) (33)
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for all x, y ∈ B1, where L : B2
1 −→ [0,∞) satifies the condition

lim
N→∞

L(kNJx, kNJy)

k4NJ
= 0 (34)

for all x ∈ B1. Then there is only one quartic mapping Q : B1 −→ B2 satisfying the

functional equation (1) and

‖Q(x)− f(x)‖ ≤ 1

2k4

∞∑
M= 1−J

2

L(kMJx, 0)

k4MJ
(35)

for all x ∈ B1 with J = ±1. The mapping Q is defined by

Q(x) = lim
N→∞

L(kNJx)

k4NJ
(36)

for all x ∈ B1.

Proof. Changing y by 0 in (33), we reach∥∥∥ f(x) + f(kx) + f(x) + f(−kx)− k2 [2f(x) + f(x) + f(−x)]

+2(k4 − 1)f(x)− k2

4
(k2 − 1)f(2x)

∥∥∥∥ ≤ L(x, 0) (37)

for all x ∈ B1. Using evenness of f and f(2x) = 24f(x) in (37), we obtain∥∥∥∥2f(kx) + 2f(x)− 4k2f(x) + 2(k4 − 1)f(x)− k2

4
(k2 − 1)f(2x)

∥∥∥∥ ≤ L(x, 0),∥∥2f(kx) + 2f(x)− 4k2f(x) + 2(k4 − 1)f(x)− 4 k2(k2 − 1)f(x)
∥∥ ≤ L(x, 0),∥∥2f(kx)− 2k4f(x)

∥∥ ≤ L(x, 0), (38)

for all x ∈ B1. It follows from (38) and k 6= 0,±1,∥∥∥∥f(kx)

k4
− f(x)

∥∥∥∥ ≤ L(x, 0)

2k4
(39)

for all x ∈ B1. The rest of the proof is similar to that of Theorem 3.1. �

The following corollary is the immediate consequence of Theorem 3.3 concerning

the stabilities of (1).

Corollary 3.4. Assume that S and R are positive numbers. Let f : B1 −→ B2
be an even function fulfilling the inequality

‖Fk(x, y)‖ ≤


S;

S
(
||x||R + ||y||R

)
; R 6= 4

S
(
||x||R||y||R + ||x||2R + ||y||2R

)
; R 6= 2

(40)
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for all x ∈ B1. Then there is only one quartic mapping Q : B1 −→ B2 satisfying the

functional equation (1) and

‖Q(x)− f(x)‖ ≤



S

2|k4 − 1|
;

S||x||R

2|k4 − kR|
;

S||x||2R

2|k4 − k2R|
;

(41)

for all x ∈ B1.

The following example is to illustrate that the functional equation (1) is not

stable for R = 4 in Corollary 3.4.

Example 3.2. Let L : R→ R be a function defined by

L(x) =

{
Tx4, if |x| <1

T, otherwise

where T > 0 is a constant, and define a function f : R→ R by

f(x) =
∞∑

M=0

L(kMx)

k4M
for all x ∈ R.

Then f satisfies the functional inequality∣∣f(x+ ky) + f(kx+ y) + f(x− ky) + f(y − kx)− k2 [2f(x+ y) + f(x− y) + f(y − x)]

+2(k4 − 1)[f(x) + f(y)]− k2

4
(k2 − 1)[f(2x) + f(2y)]

∣∣∣∣
≤ k4T (9k4 − 5k2)

2(k4 − 1)

(
|x|4 + |y|4

)
(42)

for all x, y ∈ R. Then there are not a quartic mapping Q : R → R and a constant

B > 0 such that

|f(x)−Q(x)| ≤ B|x|4 for all x ∈ R. (43)

Theorem 3.5. Let f : B1 −→ B2 be a function fulfilling the inequality

‖Fk(x, y)‖ ≤ L(x, y) (44)

for all x, y ∈ B1, where L : B2
1 −→ [0,∞) satisfies the conditions (12) and (34),

for all x ∈ B1. Then there are only one cubic mapping C : B1 −→ B2 and only one
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quartic mapping Q : B1 −→ B2 satisfying the functional equation (1) such that

‖f(x)− C(x)−Q(x)‖ ≤ 1

2

1

λ

∞∑
M= 1−J

2

(
L(2MJx, 0)

23MJ
+
L(−2MJx, 0)

23MJ

)

+
1

2k4

∞∑
M= 1−J

2

(
L(kMJx, 0)

k4MJ
+
L(−kMJx, 0)

k4MJ

) (45)

for all x ∈ B1 with J = ±1. The mappings C and Q are defined in (14) and (36)

respectively, for all x ∈ B1.

Proof. Assume that

fc(x) =
f(x)− f(−x)

2
,

for all x ∈ B1. It is easy to verify that

fc(0) = 0 and fc(−x) = −fc(x),

for all x ∈ B1. By Theorem 3.1 and definition of fc, we have

‖fc(x)− C(x)‖ ≤ 1

2
· 1

λ

∞∑
M= 1−J

2

(
L(2MJx, 0)

23MJ
+
L(−2MJx, 0)

23MJ

)
(46)

for all x ∈ B1. Also, assume that

fq(x) =
f(x) + f(−x)

2
,

for all x ∈ B1. It is easy to verify that

fq(0) = 0 and fq(−x) = fq(x),

for all x ∈ B1. By Theorem 3.3 and definition of fq, we have

‖fq(x)−Q(x)‖ ≤ 1

2
· 1

2k4

∞∑
M= 1−J

2

(
L(kMJx, 0)

k4MJ
+
L(−kMJx, 0)

k4MJ

)
(47)

for all x ∈ B1. Let us define

f(x) = fc(x) + fq(x) (48)

for all x ∈ B1. Then by (46), (47) and (48), we arrive our result. �

The following corollary is an immediate consequence of Theorem 3.5 concerning

the stabilities of (1).
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Corollary 3.6. Assume that S and R are positive numbers. Let f : B1 −→ B2
be a function fulfilling the inequality

‖Fk(x, y)‖ ≤


S;

S
(
||x||R + ||y||R

)
; R 6= 3, 4

S
(
||x||R||y||R + ||x||2R + ||y||2R

)
; 2R 6= 3, 4

(49)

for all x ∈ B1. Then there are only one cubic mapping C : B1 −→ B2 and only one

quartic mapping Q : B1 −→ B2 such that satisfying the functional equation (1) and

‖f(x)− C(x)−Q(x)‖ ≤



S

2

(
1

λ|23 − 1|
+

1

2|k4 − 1|

)
;

S||x||R

2

(
1

λ|23 − 2R|
+

1

2|k4 − kR|

)
;

S||x||2R

2

(
1

λ|23 − 22R|
+

1

2|k4 − k2R|

)
;

(50)

for all x ∈ B1.

3.2. Radu’s method.

Theorem 3.7. Let f : B1 −→ B2 be an odd function fulfilling the inequality (11)

for all x, y ∈ B1, where L : B2
1 −→ [0,∞) with the condition

lim
N→∞

L(`NI x, `
N
I y)

`3NI
= 0 (51)

where

`I =

{
2 if I = 0,
1
2

if I = 1
(52)

holds for all x, y ∈ B1. Assume that there exists L = L(I) such that for the function

L (x, 0) =
23

λ
L
(x

2
, 0
)

we have the following property

1

`3I
L(`Ix, 0) = LL(w, 0), (53)

for all x ∈ B1. Then there is only one cubic mapping C : B1 −→ B2 satisfying the

functional equation (1) and

‖C(x)− f(x)‖ ≤
(
L1−I

1− L

)
L(x, 0) (54)

for all x ∈ B1.

Proof. Consider the set

A = {f/f : B1 −→ B2, f(0) = 0}
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and introduce the generalized metric d : A×A → [0,∞] as follows:

d(f, g) = inf{ω ∈ (0,∞) : ‖f(x)− g(x)‖ ≤ ω L(x, 0), x ∈ B1}. (55)

It is easy to show that (A, d) is complete with respect to the defined metric. Let us

define the linear mapping U : A −→ A by

Uf(x) =
1

`3I
fa(`Ix),

for all x ∈ B1. For given f, fa ∈ A and d(f, fa) ∈ ω that is

‖f(x)− fa(x)‖ ≤ ω L(x, 0), x ∈ B1.

So, we have

‖f(x)− fa(x)‖ =

∥∥∥∥ 1

`3I
f(`Ix)− 1

`3I
fa(`Ix)

∥∥∥∥
≤ ω

`3I
L(`Ix, 0)

= LωL(x, 0)

for all x ∈ B1, that is,

d(Uf, Ufa) ≤ Ld(f, fa), ∀ f, fa ∈ A.

This implies U is a strictly contractive mapping on A with Lipschitz constant L.

For the case I = 0, it follows from (55),(18) and (53) , we reach

‖Uf(x)− f(x)‖ ≤ L L(x, 0), x ∈ B1. (56)

Hence,

d(Uf, f) ≤ L1−0, f ∈ A. (57)

For the case I = 1, it follows from (55),(23) and (53), we get

‖f (x)− Uf(x)‖ ≤ L(x, 0), x ∈ B1. (58)

Thus, we obtain

d(f, Uf) ≤ L1−1, f ∈ A. (59)

Hence, from (57) and (59), we arrive

d(Uf, f) ≤ L1−I , f ∈ A, (60)

where I = 0, 1. Hence, property (FP1) holds. It follows from property (FP2) that

there exists a fixed point C of U in A such that

C(x) = lim
N→∞

1

`3NI
f(`3NI x) (61)
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for all x ∈ B1. In order to show that C satisfies (1), replacing (x, y) by (`NI x, `
N
I y)

and dividing by `3NI in (11), we have

1

`3NI

∥∥Fk(`NI x, `NI y)
∥∥ ≤ 1

23N
L(`NI x, `

N
I y)

for all x, y ∈ B1. Approaching N → ∞ and using the definition of C, (51) in the

above inequality, we can see that C(x) satisfies the functional equation (1) for all

x ∈ B1. By property (FP3), C is the unique fixed point of U in the set

∆ = {C ∈ A : d(f, C) <∞},

such that

‖f(x)− C(x)‖ ≤ ωL(x, 0), x ∈ B1.

Finally by property (FP4), we obtain

‖f(x)− C(x)‖ ≤ ‖f(x)− Uf(x)‖ , x ∈ B1.

This implies

‖f(x)− C(x)‖ ≤ L
1−I

1− L
which yields

‖f(x)− C(x)‖ ≤
(
L1−i

1− L

)
L(x, 0), x ∈ B1.

So, the proof is completed. �

Using Theorem 3.7, we prove the following corollary concerning the stabilities of

(1).

Corollary 3.8. Assume that S and R are positive numbers. Let f : B1 −→ B2
be an odd function fulfilling the inequality (27), for all x ∈ B1. Then there is only

one cubic mapping C : B1 −→ B2 satisfying the functional equation (1) and

‖C(x)− f(x)‖ ≤



S 23

λ|23 − 1|
;

S 23||x||R

λ|23 − 2R|
;

S 23||x||2R

λ|23 − 22R|
;

(62)

for all x ∈ B1.

Proof. Let

L (x, y) =


S;

S
(
||x||R + ||y||R

)
;

S
(
||x||R||y||R + ||x||2R + ||y||2R

)
;
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for all x, y ∈ B1. Now

1

`3NI
L(`NI x, `

N
I y) =



S

`3NI
,

S

`3NI

{
||`NI x||R + ||`NI y||R

}
,

S

`3NI

{
||`NI x||R ||`NI y||R +

{
||`NI x||2R + ||`NI y||2R

}}

=


→ 0 as N →∞,

→ 0 as N →∞,

→ 0 as N →∞.

Thus, (51) holds. But, we have

L (x, 0) =
23

λ
L
(x

2
, 0
)

has the property

1

`3I
L(`Ix, 0) = L L(x, 0)

for all x ∈ B1. Hence,

L(x, 0) =
23

λ
L
(x

2
, 0
)

=



S 23

λ
,

S 23

λ · 2R
||x||R,

S 23

λ · 22R
||x||2R

(63)

for all x ∈ B1. It follows from (63),

1

`3I
L(`Ix, 0) =


`−3I

S 23

λ
,

`R−3I

S 23

λ
||x||R

`2R−3I

S 23

λ
||x||2R.

Hence, the inequality (83) holds for

(i). L = `−3I if I = 0 and L = 1
`−3
I

if I = 1;

(ii). L = `R−3I for R < 3 if I = 0 and L = 1

`R−3
I

for R > 3 if I = 1;

(iii). L = `2R−3I for 2R > 3 if I = 0 and L = 1

`2R−3
I

for 2R > 3 if I = 1.
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Now, from (83), we prove the following cases for condition (i).

L = `−3I , I = 0 L = 1
`−3
I

, I = 1

L = 2−3, I = 0 L = 1
2−3 , I = 1

L = 2−3, I = 0 L = 23, I = 1

‖ f(x)− C(x) ‖ ‖ f(x)− C(x) ‖
≤
(
L1−I
1−L

)
L(x, 0) ≤

(
L1−I
1−L

)
L(x, 0)

=
(

(2−3)1−0

1−2−3

)
· S 23

λ
=
(

(23)1−1

1−23

)
· S 23

λ

=
(

2−3

1−2−3

)
· S 23

λ
=
(

1
1−23

)
· S 23

λ

=
(

S 23

λ(23−1)

)
=
(

S 23

λ(1−23)

)
Also, from (83), we prove the following cases for condition (ii).

L = `R−3I , R < 3, I = 0 L = 1

`R−3
I

, R > 3, I = 1

L = 2R−3, R < 3, I = 0 L = 1
2R−3 , R < 3, I = 1

L = 2R−3, R < 3, I = 0 L = 23−R, R > 3, I = 1

‖ f(x)− C(x) ‖ ‖ f(x)− C(x) ‖
≤
(
L1−i
1−L

)
L(x, 0) ≤

(
L1−i
1−L

)
L(x, 0)

=
(

(2R−3)1−0

1−2R−3

)
· S 23

λ·2R ||x||
R =

(
(23−R)1−1

1−23−R

)
· S 23

λ·2R ||x||
R

=
(

2R−3

1−2R−3

)
· S 23

λ·2R ||x||
R =

(
1

1−23−R
)
· S 23

λ·2R ||x||
R

=
(

2R

23−2R

)
· S 23

λ·2R ||x||
R =

(
2R

2R−23

)
· S 23

λ·2R ||x||
R

Finally, the proof of (83) for condition (iii) is similar to that of condition (ii). Hence

the proof is complete. �

Theorem 3.9. Let f : B1 −→ B2 be an even function fulfilling the inequality

(33) for all x, y ∈ B1, where L : B2
1 −→ [0,∞) with the condition

lim
N→∞

L(`NI x, `
N
I y)

`4NI
= 0 (64)

where

`I =

{
k if I = 0,
1
k

if I = 1
(65)

holds for all x, y ∈ B1. Assume that there exists L = L(I) such that the function

L (x, 0) =
1

k
L
(x
k
, 0
)

with the property
1

`4I
L(`Ix, 0) = LL(w, 0) (66)
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for all x ∈ B1. Then there is only one quartic mapping Q : B1 −→ B2 satisfying the

functional equation (1) and

‖Q(x)− f(x)‖ ≤
(
L1−I

1− L

)
L(x, 0) (67)

for all x ∈ B1.

Proof. The proof of the theorem is similar to that of Theorem 3.7 by define

the linear mapping as U : A −→ A by

Uf(x) =
1

`4I
fq(`Ix),

for all x ∈ B1. For given f, fq ∈ A �

Using Theorem 4.9, we prove the following corollary concerning the stabilities of

(1).

Corollary 3.10. Assume that S and R are positive numbers. Let f : B1 −→ B2
be an even function fulfilling the inequality (40), for all x ∈ B1. Then there is only

one quartic mapping Q : B1 −→ B2 satisfying the functional equation (1) and

‖Q(x)− f(x)‖ ≤



S

2|k4 − 1|
;

S|x||R

2|k4 − kR|
;

S||x||2R

2|k4 − k2R|
;

(68)

for all x ∈ B1.

Proof. The proof of the corollary is similar ideas of to that of Corollary 3.8.

Hence the details of the proof are omitted. �

Theorem 3.11. Let f : B1 −→ B2 be a function fulfilling the inequality (44), for

all x, y ∈ B1, where L : B2
1 −→ [0,∞) satisfies the conditions (51) and (64), where

`I is respectively defined in (52) and (65) that holds for all x, y ∈ B1. Assume that

there exists L = L(I) such that the functions

L (x, 0) =
1

2
L
(x

2
, 0
)

and L (x, 0) =
23

λ
L
(x

2
, 0
)

satisfies the properties (53), (66) and

1

`3I
L(`Ix, 0) = LL(w, 0) (69)
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for all x ∈ B1. Then there are only one cubic mapping C : B1 −→ B2 and only one

quartic mapping Q : B1 −→ B2 satisfying the functional equation (1) and

‖f(x)− C(x)−Q(x)‖ ≤
(
L1−I

1− L

)
(L(x, 0) + L(−x, 0)) (70)

for all x ∈ B1.

Proof. By the definition of fc(x) and fq(x) in Theorem 3.5 and with the help

of Theorems 3.7 and 4.9, we arrive our desired result. �

Using Theorem 3.11, we prove the following corollary concerning the stabilities

of (1).

Corollary 3.12. Assume that S and R be positive numbers. Let f : B1 −→ B2
be an even function fulfilling the inequality (49) for all x ∈ B1. Then there is only

one quartic mapping Q(x) : B1 −→ B2 satisfying the functional equation (1) and

‖f(x)− C(x)−Q(x)‖ ≤



S 23

λ|23 − 1|
+

S

2|k4 − 1|
;

S 23||x||R

λ|23 − 2R|
+

S|x||R

2|k4 − kR|
;

S 23||x||2R

λ|23 − 22R|
+

S||x||2R

2|k4 − k2R|
;

(71)

for all x ∈ B1.

4. Stability in quasi beta Banach space

In this section, we investigate the generalized Ulam-Hyers stability of the func-

tional equation (1) in Quasi Beta Banach Space. To prove stability results, let us

take B1 be a normed space and B2 be a Quasi Beta Banach Space.

4.1. Hyers Method.

Theorem 4.1. Let f : B1 −→ B2 be an odd function fulfilling the inequality (11)

for all x, y ∈ B1, where L : B2
1 −→ [0,∞) with the condition (12) for all x ∈ B1.

Then there exists only one cubic mapping C : B1 −→ B2 satisfying the functional

equation (1) and

‖C(x)− f(x)‖ ≤ KN−1

λβ

∞∑
M= 1−J

2

L(2MJx, 0)

23MJ
(72)

for all x ∈ B1 with J = ±1 and λ = 2k2(k2 − 1), where the mapping C is defined in

(14) for all x ∈ B1.
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Proof. From (16), we arrive∥∥∥∥−k24 (k2 − 1)f(2x) + 2k2
(
k2 − 1

)
f(x)

∥∥∥∥ ≤ L(x, 0) (73)

for all x ∈ B1. It follows from (73) and since k 6= 0,±1 that∥∥∥∥f(2x)

23
− f(x)

∥∥∥∥ ≤ L(x, 0)

(2k2 (k2 − 1))β
(74)

for all x ∈ B1. Let λ = 2k2 (k2 − 1) in above inequality, we arrive∥∥∥∥f(2x)

23
− f(x)

∥∥∥∥ ≤ L(x, 0)

λβ
(75)

for all x ∈ B1. The rest of the proof is similar to that of Theorem 3.1. �

The following corollary is an immediate consequence of Theorem 4.1 concerning

the stabilities of (1).

Corollary 4.2. Assume that S and R are positive numbers. Let f : B1 −→ B2
be an odd function fulfilling the inequality (27) for all x, y ∈ B1. Then there exists

a one and only cubic mapping C : B1 −→ B2 satisfying the functional equation (1)

and

‖C(x)− f(x)‖ ≤



KN−1S

λβ|23 − 1|
;

KN−1S||x||R

λβ|23 − 2Rβ|
;

KN−1S||x||2R

λβ|23 − 22Rβ|
;

(76)

for all x ∈ B1.

Theorem 4.3. Let f : B1 −→ B2 be an even function fulfilling the inequality

(33) for all x, y ∈ B1, where L : B2
1 −→ [0,∞) satifies the condition (34) for all

x ∈ B1. Then there is only one quartic mapping Q : B1 −→ B2 satisfying the

functional equation (1) and

‖Q(x)− f(x)‖ ≤ KN−1

(2 k4)β

∞∑
M= 1−J

2

L(kMJx, 0)

k4MJ
(77)

for all x ∈ B1 with J = ±1, where the mapping Q(x) is defined in (36) for all

x ∈ B1.

Proof. From (38), we arrive∥∥2f(kx)− 2k4f(x)
∥∥ ≤ L(x, 0) (78)
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for all x ∈ B1. It follows from (78) and since k 6= 0,±1 that∥∥∥∥f(kx)

k4
− f(x)

∥∥∥∥ ≤ L(x, 0)

(2 k4)β
(79)

for all x ∈ B1. The rest of the proof is similar to that of Theorem 3.1. �

The following corollary is an immediate consequence of Theorem 4.3 concerning

the stabilities of (1).

Corollary 4.4. Assume that S and R are positive numbers. Let f : B1 −→ B2
be an even function fulfilling the inequality (40) for all x, y ∈ B1. Then there is only

one quartic mapping Q(x) : B1 −→ B2 satisfying the functional equation (1) and

‖Q(x)− f(x)‖ ≤



KN1k4 S

(2k4)β |k4 − 1|
;

KN1k4 S||x||R

(2k4)β |k4 − kRβ|
;

KN1k4 S||x||2R

(2k4)β |k4 − k2Rβ|
;

(80)

for all x ∈ B1.

Theorem 4.5. Let f : B1 −→ B2 be a function fulfilling the inequality (44) for

all x, y ∈ B1, where L : B2
1 −→ [0,∞) satifies the conditions (12) and (34) for all

x ∈ B1. Then there are only one cubic mapping C : B1 −→ B2 and only one quartic

mapping Q : B1 −→ B2 satisfying the functional equation (1) and

‖f(x)− C(x)−Q(x)‖ ≤ KN

2β

 1

λβ

∞∑
M= 1−J

2

(
L(2MJx, 0)

23MJ
+
L(−2MJx, 0)

23MJ

)

+
1

(2k4)β

∞∑
M= 1−J

2

(
L(kMJx, 0)

k4MJ
+
L(−kMJx, 0)

k4MJ

) (81)

for all x ∈ B1 with J = ±1, where the mappings C(x) and Q(x) are defined in (14)

and (36), respectively, for all x ∈ B1.

Proof. The proof is similar lines to that of Theorem 3.5. �

The following corollary is an immediate consequence of Theorem 4.5 concerning

the stabilities of (1).

Corollary 4.6. Assume that S and R are positive numbers. Let f : B1 −→ B2
be a function fulfilling the inequality (49) for all x, y ∈ B1. Then there are only one
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cubic mapping C : B1 −→ B2 and only one quartic mapping Q : B1 −→ B2 satisfying

the functional equation (1) and

‖f(x)− C(x)−Q(x)‖ ≤



KN S

2β

(
1

λβ|23 − 1|
+

k4

(2k4)β |k4 − 1|

)
;

KN S||x||R

2β

(
1

λ|23 − 2Rβ |
+

k4

(2k4)β |k4 − kRβ |

)
;

KN S||x||2R

2β

(
1

λ|23 − 22Rβ |
+

k4

(2k4)β |k4 − k2Rβ |

)
;

(82)

for all x ∈ B1.

4.2. Radu’s method. The proof of following theorems and corollaries are sim-

ilar lines to that of Section 3.2.

Theorem 4.7. Let f : B1 −→ B2 be an odd function fulfilling the inequality

(11), for all x, y ∈ B1, where L : B2
1 −→ [0,∞) satisfies the condition (51) and `I is

defined in (52) such that holds for all x, y ∈ B1. Assume that there exists L = L(I)

such that the function

L (x, 0) =
23

λβ
L
(x

2
, 0
)

satisfies the property (53), for all x ∈ B1. Then there is only one cubic mapping

C : B1 −→ B2 satisfying the functional equation (1) and

‖C(x)− f(x)‖ ≤
(
L1−I

1− L

)
L(x, 0) (83)

for all x ∈ B1.

Corollary 4.8. Assume that S and R are positive numbers. Let f : B1 −→ B2
be an odd function fulfilling the inequality (27), for all x ∈ B1. Then there is only

one cubic mapping C : B1 −→ B2 satisfying the functional equation (1) and

‖C(x)− f(x)‖ ≤



S 23

λβ|23 − 1|
;

S 23||x||R

λβ|23 − 2Rβ|
;

S 23||x||2R

λβ|23 − 22Rβ|
;

(84)

for all x ∈ B1.

Theorem 4.9. Let f : B1 −→ B2 be an even function fulfilling the inequality

(33), for all x, y ∈ B1, where L : B2
1 −→ [0,∞) satisfies the condition (64) and `I
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is defined in 4FMaq.1a such that holds for all x, y ∈ B1. Assume that there exists

L = L(I) such that the function

L (x, 0) =
1

2β
L
(x

2
, 0
)

with the property (66) for all x ∈ B1. Then there is only one quartic mapping

Q : B1 −→ B2 satisfying the functional equation (1) and

‖Q(x)− f(x)‖ ≤
(
L1−I

1− L

)
L(w, 0) (85)

for all x ∈ B1.

Corollary 4.10. Assume that S and R are positive numbers. Let f : B1 −→ B2
be an even function fulfilling the inequality (40), for all x ∈ B1. Then there is only

one quartic mapping Q : B1 −→ B2 satisfying the functional equation (1) and

‖Q(x)− f(x)‖ ≤



S

(2k4)β |k4 − 1|
;

S|x||R

(2k4)β |k4 − kRβ|
;

S||x||2R

(2k4)β |k4 − k2Rβ|
;

(86)

for all x ∈ B1.

Theorem 4.11. Let f : B1 −→ B2 be a function fulfilling the inequality (44),

for all x, y ∈ B1, where L : B2
1 −→ [0,∞) satifies the conditions (51) and (64), and

`I is respectively defined in (52) and (65) that holds for all x, y ∈ B1. Assume that

there exists L = L(I) such that the functions

L (x, 0) =
1

2β
L
(x

2
, 0
)

and L (x, 0) =
23

λβ
L
(x

2
, 0
)

with the properties (53) and (66), for all x ∈ B1. Then there are only one cubic

mapping C : B1 −→ B2 and only one quartic mapping Q : B1 −→ B2 satisfying the

functional equation (1) and

‖f(x)− C(x)−Q(x)‖ ≤ K

2β

(
L1−I

1− L

)
(L(x, 0) + L(−x, 0)) (87)

for all x ∈ B1.

Corollary 4.12. Assume that S and R are positive numbers. Let f : B1 −→ B2
be an even function fulfilling the inequality (49), for all x ∈ B1. Then there is only
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one quartic mapping Q(x) : B1 −→ B2 satisfying the functional equation (1) and

‖f(x)− C(x)−Q(x)‖ ≤



K

2β

(
S 23

λβ|23 − 1|
+

S

(2k4)β |k4 − 1|

)
;

K

2β

(
S 23||x||R

λβ|23 − 2Rβ|
+

S|x||R

(2k4)β |k4 − kRβ|

)
;

K

2β

(
S 23||x||2R

λβ|23 − 22Rβ|
+

S||x||2R

(2k4)β |k4 − k2Rβ|

)
;

(88)

for all x ∈ B1.

5. Stability in fuzzy Banach space

In this section, we investigate the generalized Ulam-Hyers stability of the func-

tional equation (1) in fuzzy Banach spaces. To prove stability results, let us take

B3, (B1, N) and (B2, N ′) are linear space, fuzzy normed space and fuzzy Banach

space, respectively.

5.1. Definitions on fuzzy Banach spaces.

Definition 5.1. Let X be a real linear space. A function N : X × R −→ [0, 1]

(so-called fuzzy subset) is said to be a fuzzy norm on X if for all x, y ∈ X and all

s, t ∈ R,

(FNS1) N(x, c) = 0, for c ≤ 0;

(FNS2) x = 0 if and only if N(x, c) = 1, for all c > 0;

(FNS3) N(cx, t) = N
(
x, t
|c|

)
if c 6= 0;

(FNS4) N(x+ y, s+ t) ≥ min{N(x, s), N(y, t)};
(FNS5) N(x, ·) is a non-decreasing function on R and limt→∞N(x, t) = 1;

(FNS6) for x 6= 0, N(x, ·) is (upper semi) continuous on R.

The pair (X,N) is called a fuzzy normed linear space. One may regard

N(X, t) as the truth-value of the statement the norm of x is less than or equal to

the real number t’.

Example 5.2. Let (X, || · ||) be a normed linear space. Then

N (x, t) =


t

t+ ‖x‖
, t > 0, x ∈ X,

0, t ≤ 0, x ∈ X
is a fuzzy norm on X.

Definition 5.3. Let (X,N) be a fuzzy normed linear space. Let {xn} be a

sequence in X. Then {xn} is said to be convergent if there exists x ∈ X such that

lim
n→∞

N(xn−x, t) = 1, for all t > 0. In that case, x is called the limit of the sequence

{xn} and we denote it by N − lim
n→∞

xn = x.
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Definition 5.4. A sequence {xn} in X is called Cauchy if for each ε > 0 and

each t > 0, there exists n0 such that, for all n ≥ n0 and all p > 0, we have

N(xn+p − xn, t) > 1− ε.

Definition 5.5. Every convergent sequence in a fuzzy normed space is Cauchy.

If each Cauchy sequence is convergent, then the fuzzy norm is said to be complete

and this fuzzy normed space is called a fuzzy Banach space.

Definition 5.6. A mapping f : X −→ Y between fuzzy normed spaces X and

Y is continuous at a point x0 if, for each sequence {xn} covering to x0 in X, the

sequence f{xn} converges to f(x0). If f is continuous at each point of x0 ∈ X, then

f is said to be continuous on X.

5.2. Hyers method.

Theorem 5.1. Let f : B1 −→ B2 be an odd mapping fulfilling the inequality

N (Fk(x, y), s) ≥ N ′ (L (x, y) , s) (89)

for all x, y ∈ B1 and s > 0, where L : B2
1 −→ B3, 0 <

( s
23

)J
< 1 and the following

conditions hold

lim
N→∞

N ′
(
L
(
2JNx, 2JNy

)
, 23JNs

)
= 1 (90)

N ′
(
L
(
2Jz, 2Jy

)
, s
)
≥ N ′

(
tJL (x, y) , s

)
(91)

for all x, y ∈ B1 and all s > 0. Then there is a unique cubic mapping C : B1 −→ B2
which satisfies (1) and

N (f(x)− C(x), s) ≥ N ′
(
L (x, 0) ,

s|23 − t|
23 η

)
(92)

for all x ∈ B1 with J = ±1 and λ = 2k2 (k2 − 1). The mapping C is defined by

lim
N→∞

N
(
C(x)− f(2sx)

23N
, s

)
= 1 (93)

for all x ∈ B1.

Proof. Changing y by 0 in (89), we reach

N
(
f(x) + f(kx) + f(x) + f(−kx)− k2 [2f(x) + f(x) + f(−x)]

+2(k4 − 1)f(x)− k2

4
(k2 − 1)f(2x), s

)
≥ N ′ (L (x, 0) , s) (94)
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for all x ∈ B1. Using oddness of f in (94) and it follows from (94) that

N
(

2f(x)− 2k2f(x) + 2(k4 − 1)f(x)− k2

4
(k2 − 1)f(2x), s

)
≥ N ′ (L (x, 0) , s) ;

or

N
(
−k

2

4
(k2 − 1)f(2x) + 2k2

(
k2 − 1

)
f(x), s

)
≥ N ′ (L (x, 0) , s) (95)

for all x ∈ B1. It follows from (95) and k 6= 0,±1,

N
(
f(2x)

23
− f(x),

s

2k2 (k2 − 1)

)
≥ N ′ (L (x, 0) , s) (96)

for all x ∈ B1. Set λ = 2k2 (k2 − 1) in the above inequality, we have

N
(
f(2x)

23
− f(x),

s

λ

)
≥ N ′ (L (x, 0) , s) (97)

for all x ∈ B1. Replacing x by 2Nx in (97), we obtain

N
(
f(2N+1x)

23
− f(2Nx),

s

λ

)
≥ N ′

(
L
(
2Nx, 0

)
, s
)

(98)

for all x ∈ B1 and s > 0. Using (91), (FNS3) in (98), we arrive

N
(
f(2N+1x)

23
− f(2Nx),

s

λ

)
≥ N ′

(
L (x, 0) ,

s

tN

)
(99)

for all x ∈ B1 and s > 0. It is easy to verify from (99), that

N
(
f(2N+1x)

23(N+1)
− f(2Nx)

23N
,

s

λ 23N

)
≥ N ′

(
L (x, 0) ,

s

tN

)
(100)

for all x ∈ B1 and s > 0. Switching s by tNs in (100), we get

N

(
f(2N+1x)

23(q+1)
− f(2Nx)

23N
,

(
t

23

)N
s

λ

)
≥ N ′ (L (x, 0) , s) (101)

for all x ∈ B1 and s > 0. It is easy to see that

f(2Nx)

23N
− f(x) =

N−1∑
r=0

[
f(2r+1x)

23(r+1)
− f(2rx)

23r

]
(102)

for all x ∈ B1. From equations (101) and (102), we have

N

(
f(2Nx)

23N
− f(x),

N−1∑
r=0

(
t

23

)r
s

λ

)
≥ min

N−1⋃
r=0

{
N
(
f(2r+1x)

23(r+1)
− f(2rx)

23r
,

(
t

23

)r
s

λ

)}

≥ min
N−1⋃
r=0

{N ′ (L (x, 0) , s)} = N ′ (L (x, 0) , s)

(103)
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for all x ∈ B1 and all s > 0. Replacing x by 2Px in (103) and using (91), (FNS3),

and substituting s by tP s, we obtain

N

(
f(2N+Px)

23(N+P )
− f(2Px)

23P
,

N+P−1∑
r=P

(
t

23

)r
s

λ

)
≥ N ′ (L (x, 0) , s) (104)

for all x ∈ B1 and all s > 0 and all P > N ≥ 0. Using (FNS3) in (104), we obtain

N
(
f(2N+Px)

23(N+P )
− f(2Px)

23P
, s

)
≥ N ′

L (x, 0) ,
s λ

N+P−1∑
r=P

(
t
23

)r
 (105)

for all x ∈ B1 and s > 0. Since 0 < t < 23 and
N∑
r=0

(
t

23

)r
< ∞, the Cauchy

criterion for convergence and (FNS5) implies that

{
f(2Nx)

23N

}
is a Cauchy sequence

in (B2, N ′). Since (B2, N ′) is a fuzzy Banach space, this sequence converges to some

point C(x) ∈ B2. So one can define the mapping C : B1 −→ B2 by

lim
N→∞

N
(
C(x)− f(2Nx)

23N
, s

)
= 1 (106)

for all x ∈ B1 and all s > 0. Letting P = 0 and N →∞ in (105), we get

N (C(x)− f(x), s) ≥ N ′
(
L (x, 0) ,

s λ(23 − t)
23

)

for all x ∈ B1 and all s > 0. To prove C satisfies the (1), replacing (x, y) by

(2Nx, 2Ny) in (89), we obtain

N (C(x, y), s) = N
(

1

23N
Fk(2

Nx, 2Ny), s

)
≥ N ′

(
L
(
2Nx, 2Ny

)
, 23Ns

)
(107)
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for all x, y ∈ B1 and all s > 0. Now,

N
(
C(x+ ky) + C(kx+ y) + C(x− ky) + C(y − kx)

− k2 [2C(x+ y)− C(x− y)− C(y − x)]

− 2(k4 − 1)[C(x) + C(y)]− k2

4
(k2 − 1)[C(2x) + C(2y)], s

)
≥ min

{
N
(
C(x+ ky)− 1

23N
f(2N(x+ ky)),

s

12

)
,

N
(
C(kx+ y)− 1

23N
f(2N(kx+ y)),

s

12

)
,

N
(
C(x− ky)− 1

23N
f(2N(x− ky)),

s

12

)
,

N
(
C(y − kx)− 1

23N
f(2N(y − kx)),

s

12

)
,

N
(
k2
[
2C(x+ y)− 2

23N
f(2N(x+ y))

]
,
s

12

)
,

N
(
k2
(
−C(x− y) +

1

23N
f(2N(x− y))

]
,
s

12

)
,

N
(
k2
[
−C(y − x) +

1

23N
f(2N(y − x))

]
,
s

12

)
,

N
(
−2(k4 − 1)

[
C(x) +

1

23N
f(2N(x))

]
,
s

12

)
,

N
(
−2(k4 − 1)

[
C(y) +

1

23N
f(2N(y))

]
,
s

12

)
,

N
(
−k

2

4
(k2 − 1)

[
C(2x) +

1

23N
f(2N(2x))

]
,
s

12

)
,

N
(
−k

2

4
(k2 − 1)

[
C(2y) +

1

23N
f(2N(2y))

]
,
s

12

)
,

N
(

1

23N
f(2N(x+ ky)) +

1

23N
f(2N(kx+ y)) +

1

23N
f(2N(x− ky))

+
1

23N
f(2N(y − kx))k2

[
2

23N
f(2N(x+ y))− 1

23N
f(2N(x− y))

− 2

23N
f(2N(y − x))

]
− 2(k4 − 1)

[
1

23N
f(2N(x)) +

1

23N
f(2N(y))

]
− k2

4
(k2 − 1)

[
1

23N
f(2N(2x)) +

1

23N
f(2N(2y))

]
,
s

12

)}
(108)
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for all x, y ∈ B1 and all s > 0. Using (106), (107), (FNS5) and (108), we reach

N
(
C(x+ ky) + C(kx+ y) + C(x− ky) + C(y − kx)

− k2 [2C(x+ y)− C(x− y)− C(y − x)]

− 2(k4 − 1)[C(x) + C(y)]− k2

4
(k2 − 1)[C(2x) + C(2y)], s

)
≥ min

{
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,N ′

(
L
(
2Nx, 2Ny

)
, 23Ns

)}
(109)

for all x, y ∈ B1 and all s > 0. Approaching N tends to infinity in (111) and applying

(91), we get

N
(
C(x+ ky) + C(kx+ y) + C(x− ky) + C(y − kx)− k2[2C(x+ y)− C(x− y)

− C(y − x)]− 2(k4 − 1)[C(x) + C(y)]− k2

4
(k2 − 1)[C(2x) + C(2y)], s

)
= 1 (110)

for all x, y ∈ B1 and all s > 0. Using (FNS2) in (110), it gives

C(x+ ky)+C(kx+ y) + C(x− ky) + C(y − kx)

= k2 [2C(x+ y) + C(x− y) + C(y − x)]

+ 2(k4 − 1)[C(x) + C(y)] +
k2

4
(k2 − 1)[C(2x) + C(2y)]

for all x, y ∈ B1. Hence C satisfies the functional equation (1). The existence of C is

unique. Indeed, if C ′ be another cubic functional equation satisfying (1) and (93).

So,

N(C(x)− C ′(x), s) = N
(
C(2Nx)

23N
− C

′(2Nx)

23N
, s

)
≥ min

{
N
(
C(2Nx)

23N
− f(2Nx)

23N
,
s

2

)
,N
(
C ′(2Nx)

23N
− f(2Nx)

23N
,
s

2

)}
≥ N ′

(
L
(
2Nz, 2N0

)
,
s λ(23 − t)23N

23 2

)
= N ′

(
L (x, 0) ,

s λ(23 − t)23N

23tN 2

)
for all x ∈ B1 and all s > 0. Since

lim
N→∞

s λ(23 − t)23N

23tN 2
=∞,

we obtain

lim
N→∞

N ′
(
L (x, 0) ,

s λ(23 − t)23N

23tN 2

)
= 1.

Thus

N(C(x)− C ′(x), s) = 1
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for all x ∈ B1 and all s > 0, hence C(x) = C ′(x). Therefore C(x) − C ′(x) is unique.

Hence for J = 1 the theorem holds.

Replacing x by
x

2
in (97), we achieve

N
(
f(x)− 23

(x
2

)
,
23 s

λ

)
≥ N ′

(
L
(x

2
, 0
)
, s
)

(111)

for all x ∈ B1. The rest of the proof is similar ideas to that of case J = 1. Thus the

theorem is true for J = −1. Hence the proof is complete. �

The following corollary is an immediate consequence of Theorem 5.1 concerning

the stabilities of (1).

Corollary 5.2. Assume that S and R be positive numbers. Let f : B1 −→ B2
be an odd function fulfilling the inequality

N (Fk(x, y), s) ≥


N ′ (S, s)
N ′
(
S
{
||x||R + ||y||R

}
, s
)
, R 6= 3;

N ′
(
S
{
||x||R||y||R +

{
||x||2R + ||y||2R

}}
, s
)
, 2R 6= 3;

(112)

for all x, y ∈ B1, then there is only one cubic mapping C : B1 −→ B2 satisfying the

functional equation (1) and

N (f(x)− C(x), s) ≥


N ′ (23 S, s λ|23 − 1|) ,
N ′
(
23 S||x||R, s λ|23 − 2R|

)
,

N ′
(
23 S||x||2R, s λ|23 − 22R|

) (113)

for all x ∈ B1.

Theorem 5.3. Let f : B1 −→ B2 be an even mapping fulfilling the inequality

N (Fk(x, y), s) ≥ N ′ (L (x, y) , s) (114)

for all x, y ∈ B1 and s > 0, where L : B2
1 −→ B3 with 0 <

( s
k4

)J
< 1 and the

conditions

lim
N→∞

N ′
(
L
(
kJNx, kJNy

)
, k3JNs

)
= 1 (115)

N ′
(
L
(
kJz, kJy

)
, s
)
≥ N ′

(
tJL (x, y) , s

)
(116)

for all x, y ∈ B1 and all s > 0. Then there is a unique quartic mapping Q : B1 −→ B2
which satisfies (1) and

N (f(x)−Q(x), s) ≥ N ′
(
L (x, 0) ,

2s|k4 − t|
k4

)
(117)

for all x ∈ B1 with J = ±1. The mapping Q(x) is defined by

lim
N→∞

N
(
Q(x)− f(ksx)

k4N
, s

)
= 1 (118)

for all x ∈ B1.
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Proof. Changing y by 0 in (114), we reach

N
(
f(x) + f(kx) + f(x) + f(−kx)− k2 [2f(x) + f(x) + f(−x)]

+2(k4 − 1)f(x)− k2

4
(k2 − 1)f(2x), s

)
≥ N ′ (L (x, 0) , s) (119)

for all x ∈ B1. Using evenness of f in (119) and it follows from (119) that

N
(

2f(kx) + 2f(x)− 4k2f(x) + 2(k4 − 1)f(x)− k2

4
(k2 − 1)f(2x), s

)
≥ N ′ (L (x, 0) , s) ;

or

N
(
2f(kx) + 2f(x)− 4k2f(x) + 2(k4 − 1)f(x)− 4 k2(k2 − 1)f(x), s

)
≥ N ′ (L (x, 0) , s) ;

or

N
(
2f(kx)− 2k4f(x), s

)
≥ N ′ (L (x, 0) , s) (120)

for all x ∈ B1. It follows from (120) and since k 6= 0,±1 that

N
(
f(2x)

k4
− f(x),

s

2k4

)
≥ N ′ (L (x, 0) , s) (121)

for all x ∈ B1. The rest of the proof is similar to that of Theorem 5.1. �

The following corollary is an immediate consequence of Theorem 5.3 concerning

the stabilities of (1).

Corollary 5.4. Assume that S and R are positive numbers. Let f : B1 −→ B2
be an even function fulfilling the inequality

N (Fk(x, y), s) ≥


N ′ (S, s)
N ′
(
S
{
||x||R + ||y||R

}
, s
)
, R 6= 4;

N ′
(
S
{
||x||R||y||R +

{
||x||2R + ||y||2R

}}
, s
)
, 2R 6= 4;

(122)

for all x, y ∈ B1, then there is only one quartic mapping Q : B1 −→ B2 satisfying

the functional equation (1) and

N (f(x)−Q(x), s) ≥


N ′ (k4 S, 2 s|k4 − 1|) ,
N ′
(
k4 S||x||R, 2 s|k4 − kR|

)
,

N ′
(
k4 S||x||2R, 2 s|k4 − k2R|

) (123)

for all x ∈ B1.

Theorem 5.5. Let f : B1 −→ B2 be a mapping fulfilling the inequality

N (Fk(x, y), s) ≥ N ′ (L (x, y) , s) (124)
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for all x, y ∈ B1 and s > 0, where L : B2
1 −→ B3, 0 <

( s
23

)J
< 1; 0 <

( s
k4

)J
< 1,

and the conditions (90), (115), (91), (116) hold, for all x, y ∈ B1 and all s > 0. Then

there exists a unique cubic mapping C : B1 −→ B2 and a unique quartic mapping

Q : B1 −→ B2 which satisfies (1) and

N (f(x)− C(x)−Q(x), s)

≥ min

{
N ′
(
L (x, 0) ,

s|23 − t|
23 η

)
,N ′

(
L (−x, 0) ,

s|23 − t|
23 η

)
,

N ′
(
L (x, 0) ,

2 s|k4 − t|
k4

)
,N ′

(
L (−x, 0) ,

2 s|k4 − t|
k4

)}
(125)

for all x ∈ B1 and J = ±1. The mappings C and Q are defined in (93) and (118),

respectively.

Proof. If we define

fC(x) =
f(x)− f(−x)

2
for all x ∈ B1

it follows that

fC(0) = 0 and fC(−x) = −fC(x) for all x ∈ B1.

So, by definition of fC(x) it is easy to verify that

N (FCk(x, y), s) ≥ min {N (f(x, y), s) ,N (f(−x,−y), s)} (126)

for all x, y ∈ B1 and s > 0. Hence, by Theorem 5.1,

N (fC(x)− C(x), s) ≥ min

{
N ′
(
L (x, 0) ,

s|23 − t|
23 η

)
,N ′

(
L (−x, 0) ,

s|23 − t|
23 η

)}
(127)

for all x ∈ B1 and s > 0. Also, if we define

fQ(x) =
f(x)− f(−x)

2
for all x ∈ B1

and it follows that

fQ(0) = 0 and fQ(−x) = fQ(x) for all x ∈ B1.

So, by definition of fQ(x) it is easy to verify that

N (FQk(x, y), s) ≥ min {N (f(x, y), s) ,N (f(−x,−y), s)} (128)

for all x, y ∈ B1 and s > 0. Hence, by Theorem 5.3,

N (fQ(x)−Q(x), s) ≥ min

{
N ′
(
L (x, 0) ,

2 s|k4 − t|
k4

)
,N ′

(
L (−x, 0) ,

2 s|k4 − t|
k4

)}
(129)
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for all x ∈ B1 and s > 0. Define

f(x) = fC(x) + fQ(x) (130)

for all x ∈ B1. Using (127), (129) in (130), we arrive

N (f(x)− C(x)−Q(x), 2s)

= N (fC(x) + fQ(x)− C(x)−Q(x), 2s)

≥ min {N (fC(x)− C(x), s) ,N (fQ(x)−Q(x), s)}

≥ min

{
N ′
(
L (x, 0) ,

s|23 − t|
23 η

)
,N ′

(
L (−x, 0) ,

s|23 − t|
23 η

)
,

N ′
(
L (x, 0) ,

2 s|k4 − t|
k4

)
,N ′

(
L (−x, 0) ,

2 s|k4 − t|
k4

)}
for all x ∈ B1 and all s > 0. �

The following corollary is an immediate consequence of Theorem 5.5 concerning

the stabilities of (1).

Corollary 5.6. Assume that S and R are positive numbers. Let f : B1 −→ B2
be an even function fulfilling the inequality

N (Fk(x, y), s) ≥


N ′ (S, s)
N ′
(
S
{
||x||R + ||y||R

}
, s
)
, R 6= 3, 4;

N ′
(
S
{
||x||R||y||R +

{
||x||2R + ||y||2R

}}
, s
)
, 2R 6= 3, 4;

(131)

for all x, y ∈ B1, then there is only one quartic mapping Q : B1 −→ B2 satisfying

the functional equation (1) and

N (f(x)−Q(x), s) ≥


N ′ ([23 + k4]S, s [λ|23 − 1|+ 2|k4 − 1|]) ,
N ′
(
[23 + k4]S||x||R, s

[
λ|23 − 2R|+ 2|k4 − kR|

])
,

N ′
(
[23 + k4]S||x||2R, s

[
λ|23 − 22R|+ 2|k4 − k2R|

])
,

(132)

for all x ∈ B1.

5.3. Radu’s method.

Theorem 5.7. Let f : B1 −→ B2 be an odd function fulfilling the inequality

(89), for all x, y ∈ B1 and all s > 0, where L : B2
1 −→ [0,∞) with the condition

lim
N→∞

N ′
(
L(`NI x, `

N
I y), `3NI

)
= 1 (133)

where

`I =

{
2 if I = 0,
1
2

if I = 1
(134)
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holds for all x, y ∈ B1. Assume that there exists L = L(I) such that the function

L (x, 0) =
23

λ
L
(x

2
, 0
)

satisfies the following property

N ′
(

1

`3I
L(`Ix, 0), s

)
= N ′ (LL(x, 0), s) (135)

for all x ∈ B1 and s > 0. Then there is only one cubic mapping C : B1 −→ B2
satisfying the functional equation (1) and

N (f(x)− C(x), s) ≥ N ′
(
L1−I

1− L
L(x, 0), s

)
, (136)

for all x ∈ B1.

Proof. Consider the set

A = {f/f : B1 −→ B2, f(0) = 0}

and introduce the generalized metric d : A×A → [0,∞] as follows:

d(f, g) = inf{ω ∈ (0,∞) : N (f(x)− g(x), s) ≥ N ′ (ω L(x, 0), s) , x ∈ B1, s > 0}.
(137)

It is easy to show that (A, d) is complete with respect to the defined metric. Let us

define the linear mapping U : A −→ A by

Uf(x) =
1

`3I
fa(`Ix),

for all x ∈ B1. For given f, fa ∈ A and

N (f(x)− fa(x), s) ≥ N ′ (ω L(x, 0), s) , x ∈ B1 and all s > 0.

So, we have

N (f(x)− fa(x), s) = N
(

1

`3I
f(`Ix)− 1

`3I
fa(`Ix), s

)
≥ N ′

(
ω

`3I
L(`Ix, 0), s

)
= N ′ (LωL(x, 0), s)

for all x ∈ B1 and s > 0, that is,

d(Uf, Ufa) ≤ Ld(f, fa), for all f, fa ∈ A.

This implies U is a strictly contractive mapping on A with Lipschitz constant L.

For the case I = 0, it follows from (137),(97) and (135), we reach

N (Uf(x)− f(x), s) ≥ N ′ (L L(x, 0), s) , x ∈ B1, s > 0. (138)
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Hence,

d(Uf, f) ≤ L1−0, f ∈ A. (139)

For the case I = 1, it follows from (137),(111) and (135), we get

N (f (x)− Uf(x), s) ≥ N ′ (L(x, 0), s) , x ∈ B1, s > 0. (140)

Thus, we obtain

d(f, Uf) ≤ L1−1, f ∈ A. (141)

Hence, from (139) and (141), we arrive

d(Uf, f) ≤ L1−I , f ∈ A, (142)

where I = 0, 1. Hence, property (FP1) holds. It follows from property (FP2) that

there is a fixed point C of U in A such that

C(x) = lim
N→∞

1

`3NI
f(`3NI x), (143)

for all x ∈ B1. In order to show that C satisfies (1), the proof is similar lines to that

of 5.1 By property (FP3), C is the unique fixed point of U in the set

∆ = {C ∈ A : d(f, C) <∞},

such that

N (f(x)− C(x), s) ≥ N ′ (ωL(x, 0), s) , x ∈ B1, s > 0.

Finally, by property (FP4), we obtain

N (f(x)− C(x), s) ≥ N ′ (f(x)− Uf(x), s) , x ∈ B1, s > 0.

This implies

N (f(x)− C(x), s) ≥ N ′
(
L1−I

1− L
, s

)
which yields

N (f(x)− C(x), s) ≥ N
((
L1−i

1− L

)
L(x, 0), s

)
, x ∈ B1, s > 0.

So, the proof is completed. �

Using Theorem 5.7, we prove the following corollary concerning the stabilities of

(1).
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Corollary 5.8. Assume that S and R are positive numbers. Let f : B1 −→ B2
be an odd function fulfilling the inequality

N (Fk(x, y), s) ≥


N ′ (S, s)
N ′
(
S
{
||x||R + ||y||R

}
, s
)
, R 6= 3;

N ′
(
S
{
||x||R||y||R +

{
||x||2R + ||y||2R

}}
, s
)
, 2R 6= 3;

(144)

for all x, y ∈ B1, then there is only one cubic mapping C : B1 −→ B2 satisfying the

functional equation (1) and

N (f(x)− C(x), s) ≥


N ′ (23 S, s λ|23 − 1|) ,
N ′
(
23 S||x||R, s λ|23 − 2R|

)
,

N ′
(
23 S||x||2R, s λ|23 − 22R|

) (145)

for all x ∈ B1.

Proof. Let

L (x, y) =


S;

S
(
||x||R + ||y||R

)
;

S
(
||x||R||y||R + ||x||2R + ||y||2R

)
;

for all x, y ∈ B1. Now

N ′
(
L(`NI x, `

N
I y), `3NI s

)
=


N ′
(
S, `3NI s

)
N ′
(
S
{
||`NI x||R + ||`NI y||R

}
, `3NI s

)
,

N ′
(
S
{
||`NI x||R ||`NI y||R

+
{
||`NI x||2R + ||`NI y||2R

}}
, `3NI s

)

=


→ 1 as N →∞,

→ 1 as N →∞,

→ 1 as N →∞.

Thus, (133) holds. But, we have

L (x, 0) =
23

λ
L
(x

2
, 0
)

for all x ∈ B1. With the property

N ′
(

1

`3I
L(`Ix, 0), s

)
= N ′ (LL(x, 0), s) .
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Hence,

N ′ (L(x, 0), s) = N ′
(

23

λ
L
(x

2
, 0
)
, s

)
=



N ′
(
S 23

λ
, s

)
,

N ′
(
S 23

λ · 2R
||x||R, s

)
,

N ′
(
S 23

λ · 22R
||x||2R, s

) (146)

for all x ∈ B1. It follows from (146),

N ′
(

1

`3I
L(`Ix, 0), s

)
=



N ′
(
S 23

λ
, `3Is

)
,

N ′
(
S 23

λ
||x||R, `3−RI s

)
N ′
(
S 23

λ
||x||2R, `3−2RI s

)
.

Hence, the inequality (136) holds for

L = `3I =

{
23, 23−R, 23−2R if I = 0,
1
23
, 1

23−R
, 1

23−2R if I = 1.

Now, from (136), we prove the following cases for condition (i).

N (f(x)− C(x), s) N (f(x)− C(x), s)

≥ N ′
((
L1−I
1−L

)
L(x, 0), s

)
≥ N ′

((
L1−I
1−L

)
L(x, 0), s

)
= N ′

((
(2−3)1−0

1−2−3

)
· S 23

λ
, s
)

= N ′
((

(23)1−1

1−23

)
· S 23

λ
, s
)

= N ′
((

2−3

1−2−3

)
· S 23

λ
, s
)

= N ′
((

1
1−23

)
· S 23

λ
, s
)

= N ′
((

S 23

λ(23−1)

)
, s
)

= N ′
((

S 23

λ(1−23)

)
, s
)

= N ′ ((S 23) , sλ(23 − 1)) = N ′ ((S 23) , sλ(1− 23))

Also, from (136), we prove the following cases for condition (ii).

N (f(x)− C(x), s) N (f(x)− C(x), s)

≥ N ′
((
L1−i
1−L

)
L(x, 0), s

)
≥ N ′

((
L1−i
1−L

)
L(x, 0), s

)
= N ′

((
(2R−3)1−0

1−2R−3

)
· S 23

λ·2R ||x||
R, s
)

= N ′
((

(23−R)1−1

1−23−R

)
· S 23

λ·2R ||x||
R, s
)

= N ′
((

2R−3

1−2R−3

)
· S 23

λ·2R ||x||
R, s
)

= N ′
((

1
1−23−R

)
· S 23

λ·2R ||x||
R, s
)

= N ′
((

2R

23−2R

)
· S 23

λ·2R ||x||
R, s
)

= N ′
((

2R

2R−23

)
· S 23

λ·2R ||x||
R, s
)

= N ′
(
S 23||x||R, sλ(23 − 2R)

)
= N ′

(
S 23||x||R, sλ(2R − 23)

)
Finally, the proof of (136) for condition (iii) is similar to that of condition (ii). Hence

the proof is complete. �



38 J. M. RASSIAS, M. ARUNKUMAR∗, AND E. SATHYA

Theorem 5.9. Let f : B1 −→ B2 be an odd function fulfilling the inequality

(114), for all x, y ∈ B1 and s > 0, where L : B2
1 −→ [0,∞) with the condition

lim
N→∞

N ′
(
L(`NI x, `

N
I y), `4NI

)
= 1 (147)

where

`I =

{
k if I = 0,
1
k

if I = 1
(148)

holds for all x, y ∈ B1. Assume that there exists L = L(I) such that the function

L (x, 0) =
1

k
L
(x
k
, 0
)

with the property

N ′
(

1

`4I
L(`Ix, 0), s

)
= N ′ (LL(x, 0), s) (149)

for all x ∈ B1 and all s > 0. Then there is only one quartic mapping Q : B1 −→ B2
satisfying the functional equation (1) and

N (f(x)−Q(x), s) ≥ N ′
(
L1−I

1− L
L(x, 0), s

)
, (150)

for all x ∈ B1.

Proof. The proof of the theorem is similar lines to that of Theorem 5.7 by

defining

Uf(x) =
1

`4I
fa(`Ix),

for all x ∈ B1. �

Using Theorem 5.9, we prove the following corollary concerning the stabilities of

(1).

Corollary 5.10. Assume that S and R are positive numbers. Let f : B1 −→ B2
be an even function fulfilling the inequality

N (Fk(x, y), s) ≥


N ′ (S, s)
N ′
(
S
{
||x||R + ||y||R

}
, s
)
, R 6= 4;

N ′
(
S
{
||x||R||y||R +

{
||x||2R + ||y||2R

}}
, s
)
, 2R 6= 4;

(151)

for all x, y ∈ B1, then there is only one quartic mapping Q : B1 −→ B2 satisfying

the functional equation (1) and

N (f(x)−Q(x), s) ≥


N ′ (k4 S, 2 s|k4 − 1|) ,
N ′
(
k4 S||x||R, 2 s|k4 − kR|

)
,

N ′
(
k4 S||x||2R, 2 s|k4 − k2R|

) (152)

for all x ∈ B1.
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Theorem 5.11. Let f : B1 −→ B2 be a function fulfilling the inequality (124),

for all x, y ∈ B1 and all s > 0, where L : B2
1 −→ [0,∞) with the conditions (133)

and (147) where `I are respectively defined in (134) and (148) holds for all x, y ∈ B1.

Assume that there exists L = L(I) such that the function

L (x, 0) =
23

λ
L
(x

2
, 0
)

and L (x, 0) =
1

k
L
(x
k
, 0
)

with the property

N ′
(

1

`3I
L(`Ix, 0), s

)
= N ′ (LL(x, 0), s) , N ′

(
1

`4I
L(`Ix, 0), s

)
= N ′ (LL(x, 0), s)

(153)

for all x ∈ B1 and s > 0.. Then there is only one cubic mapping C : B1 −→ B2 and

only one quartic mapping Q : B1 −→ B2 satisfying the functional equation (1) and

N (f(x)−Q(x), s) ≥ N ′
((
L1−I

1− L

)
(L(x, 0) + L(−x, 0)), s

)
(154)

for all x ∈ B1.

Using Theorem 5.11, we prove the following corollary concerning the stabilities

of (1).

Corollary 5.12. Assume that S and R are positive numbers. Let f : B1 −→ B2
be an even function fulfilling the inequality

N (Fk(x, y), s) ≥


N ′ (S, s)
N ′
(
S
{
||x||R + ||y||R

}
, s
)
, R 6= 3, 4;

N ′
(
S
{
||x||R||y||R +

{
||x||2R + ||y||2R

}}
, s
)
, 2R 6= 3, 4;

(155)

for all x, y ∈ B1, then there is only one quartic mapping Q : B1 −→ B2 satisfying

the functional equation (1) and

N (f(x)−Q(x), s) ≥


N ′ ([23 + k4]S, s [λ|23 − 1|+ 2|k4 − 1|]) ,
N ′
(
[23 + k4]S||x||R, s

[
λ|23 − 2R|+ 2|k4 − kR|

])
,

N ′
(
[23 + k4]S||x||2R, s

[
λ|23 − 22R|+ 2|k4 − k2R|

])
,

(156)

for all x ∈ B1.
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