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Non-stabilities of mixed type Euler-Lagrange
k-cubic-quartic functional equation in various
normed spaces

J. M. Rassias, M. Arunkumar*, and E. Sathya

ABSTRACT. In this paper, we introduce and examine the generalized Ulam-Hyers
stability of fixed Euler-Lagrange k-Cubic-Quartic functional Equation
[z +ky) + f(kz +y) + f(z — ky) + f(y — k)
— 2 [2f(z+y) + flz—y) + Fly —a)) + 2(k* = D) + F(y)]

k2
+ = (= D[f(22) + f(2y)]

where k is a real number with £ # 0,41 in various Banach spaces with the help
of two different methods.

1. Introduction

A fundamental question in the theory of functional equations is as follows:
When s it true that a function that approximately satisfies a functional equation
must be close to an exact solution of the equation?

If the problem allows a solution, we say that the equation is stable. The first
stability problem concerning of group homomorphisms was introduced by Ulam [62]
in 1940. The famous Ulam stability problem was partially solved by Hyers [34] for
the linear functional equation of Banach spaces. Hyers theorem was generalized by
Aoki [2] for additive mappings and by Rassias [56], [49] for linear mappings by
considering an unbounded Cauchy difference. A generalization of the Rassias the-
orem was obtained by Gavruta [30] by replacing the unbounded Cauchy difference
by a general control function in the spirit of Rassias approach. The terminology
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Hyers-Ulam-Rassias stability originates from these historical backgrounds and this
terminology is also applied to the cases of other functional equations.

Cadariu and Radu [24] applied the fixed point method for investigation of the
Jensen functional equation. They could present a short and a simple proof (different
from the direct method initiated by Hyers in 1941) for the generalized Hyers-Ulam
stability of the Jensen functional equation, quadratic functional equation [25] and
additive functional equation [26]. Their methods are a powerful tool for studying
the stability of several functional equations.

During the last decades, the stability problems of several functional equations
have been extensively investigated by a number of authors (c.f. [3, 4, 5, 6, 7, 8,
9, 10, 11, 12, 13, 14, 15, 16, 20, 21, 22, 23, 29, 32, 36, 45, 47, 48, 52, 53,
54, 55, 64, 65, 66]) and references therein.

The solution and stability of following cubic-quartic functional equations

[+ kx) + [z — ky)
=k {flx+y) + fle—y)} -2k — 1) f(2) — 2k*(K* = 1) f(y)

D poy) k0,51,
fla+2y)+ f(z —2y) = 4(f(z +y) + f(z —y)) — 24f(y) — 6f(z) + 3f(2y)
and
fQRx+y)+ 2z —y)
=3f(x+y)+ f(—x—y) +3f(x—y)+ fly — )
+18f(x) + 6 (=) = 3f(y) — 3f(—vy)
were introduced and investigated by [21, 31, 46]

In this paper, we introduce and examine the generalized Ulam-Hyers stability of
Mixed Euler-Lagrange k—Cubic-Quartic functional Equation

flx+ky) + flhr +y) + f(z — ky) + f(y — kx)
=k 2f(x+y)+ fle—y)+ fly—2)] = 20" = D[f (=) + f(y)]

- (7 0) + f(2y) )

where k is a real number with k£ # 0, -1 in various Banach spaces with the help of

+

two different methods.

2. Solution of the functional equation

In this section, we provide the solution of the functional equation (1) by consid-
ering A and B are real vector spaces.

Theorem 2.1. Let an odd f : A — B be a mapping satisfying (1), for all
x,y € A, then f is cubic.
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PRrOOF. Changing (z,y) by (0,0) in (1), we arrive f(0) = 0. Replacing y by 0
in (1), we get

fla) + f(ka) + f(x) + f(~ka) = K [2f (x) + f(2) + f(~2)] = 2(k* = 1) f(2)

]{32

+ (8 - 1) (20) )

for all x € A. Using oddness of f in (2), we obtain

k2

2f(x) = 2k*f(x) = 2(k" = Df(2) + 7 (K = 1) f(22) (3)

for all z € A. It follows from (3) that

’%;& — 1) f(22) = (2 - 2k* + 2(k* — 1)) f(2);
%2(/{2 —1)f(22) = (—2k* + 2k) f();
K(k* — 1) f(2z) = 2%K* (k* — 1) f(2) )

for all z € A. Since k # 0, %1, the above equation yields
f2x) =2°f(x) (5)
for all z € A. Hence f is cubic. OJ

Theorem 2.2. Assume that f : A — B is an even mapping satisfying (1), for
all x,y € A, then f is quartic.

ProOOF. Changing (x,y) by (0,0) in (1), we arrive f(0) = 0. Replacing y by 0
in in (1), we get

f(@) + f(ka) + f(x) + [(—ka) = k* [2f (2) + f(2) + f(—2)] = 2(k" = 1) f(2)

R 1520 6)

A

for all x € A. Using evenness of f in (6), we obtain
2
2f(w) + 2f (kx) = 4k* f(z) — 2(k* — 1) f(z) + kz(k’Q —1)f(2z) (7)
for all z € A. Using f(2z) = 2*f(x) in (7), we have

2f(x) + 2f (kz) = 4k f(z) — 2(K" — 1) f(z) + 4k*(k* — 1) f (2) (8)
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for all x € A. It follows from (4) that
2f (kz) = (4k* — 2(k* — 1) + 4K*(K* — 1) — 2) f(x)

or
2f (k) = 2k f () (9)

for all x € A. It follows from above equation that
fka) = k' f(x) (10)
for all x € A. Hence f is quartic. ([l

Hereafter, throughout this paper let us assume f : By — By by

Fi(x,y) = e+ ky) + f(kz +y) + e = ky) + fly — k)

— kK 2f(x+y) + flx—y)+ fly — )]

2 D)+ )]~ (82— D7 (2r) + f(20)]

where k is a real number with & # 0, £1.
All the stability results are proved by Hyers and Radus Method by taking the
function f is odd, even and odd-even cases.

3. Stability in Banach space

In this section, we investigate the generalized Ulam - Hyers stability of the
functional equation (1) in Banach space. To prove stability results, let us take
B; be a normed space and By be a Banach space.

3.1. Hyers Method.
Theorem 3.1. Let f: By — By be an odd function fulfilling the inequality
[ Ex(z, y)|| < Lz, y) (11)
for all x,y € By, where L : B} — [0,00) satisfies the condition
) L(QNJJZ,QNJy)
Jim S5

for all x € By. Then there is only one cubic mapping C(x) : By — By satisfying

=0 (12)

the functional equation (1) and
1 — L(2M7z,0
e@) ~ s <5 Y HEm? (13)

for all x € By with J = 41 and X\ = 2k*(k®> — 1). The mapping C is defined by

C(x) = lim w

N—oo 23NJ (14>
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for all x € By.

PROOF. Changing y by 0 in (11), we reach

| £@)+ Fka) + f@) + F(—ha) = 2 2 (@) + fl2) + f(=)]

2~ 1) f(20)

+2(k" = 1) f(z) — 1 < L(z,0) (15)

for all x € B;. Using oddness of f in (15), we obtain

k.2

Wﬂm—%%m+mw—nﬂ>——W—nﬂ%>suawm

H f(2z) +2k* (K — 1) f(2)|| < L(,0) (16)

for all = € By. It follows from (16) and k # 0, £1,

f(2z) L(z,0)
H 93 (@) = 372 (k2 —1) (17)
for all z € By. Let A = 2k* (k* — 1) in above inequality, we arrive
f(2x) L(z,0)
<
1282~ sy < 245 i
for all x € B;. Changing = by 22 and multiplying by % in (18), we get
2
26 23 A-23
for all € B;. Using triangle inequality on (18) and (19), we have
f(2%x f(22z)  f(2z) f(2x
120 _ | - |22 120 12y
f(2z) f(2%z)  f(22)
—H 923 = f@)]| + 96 93
L(x,0) L(2z,0) 1 L(2x,0)
< _ — —_—
< M0 KO0 ) 4 2 (20)

for all z € B;. Generalizing for a positive integer N, we obtain

= ﬂﬂ'1§jﬂ§§9 @)

>/ |
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f(2Vz)

93N

for all z € B;. Hence {
C(z) € By. Indeed, replacing z by 2Fw and dividing by 237 in (21), we get

FR¥Pr) f@P)|| 1| f@N 2P

P
93(N+P) 93P 9P 93N —f(27x)

} is a Cauchy sequence and it converges to a point

_1 = 2M+Px ,0)

X Z T 93(M+P)
M=0
—0

as P — (22)

for all x € B;. Thus, we define mapping C : By — By by
f(2Nz)

o N—00 23N

for all x € B;. Letting limit N — oo in (21) and using the definition of C, we get

TEAACAL) R >H iz%:um—f@)nsié%

N—o 23N

for all z € B;. Thus (13) holds for J = 1. Now, to show that C satisfies (1), changing
(z,y) by (2N, 2Ny) and divided by 23V in (11), we reach
1 N,. oN 1 N,. oN

for all x,y € By. Approaching N — oo and using the definition of C, (12) in
the above inequality, we can see that C satisfies the functional equation (1) for all
x € B;. In order to prove the existence of C is unique, assume that C' be another
cubic mapping satisfying (1) and (13). Now,

IC(@) ~ €)= g3 llC2") — C'(2")|
= o 1C270) — F(2°0) + f(2°x) — (27

- 23% (le@™s) — 5] + [¢'@"0) — 52"}
2M+Px ,0)

— )\ Z M+P

— 0 as P — o0

for all z € By. This proves that C(x) = C'(x), for all € By. Thus, C(z) is unique.
Hence, the theorem holds for J = 1.
x
Replacing x by B in (18), we achieve

[z (3] < 22D 2
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for all x € B;. Again replacing x by g and multiply by 2% in (23), we arrive

o (3) -2 (5] < &Y 2

for all x € B;. Using triangle inequality on (23) and (24), we have

s =2 (@) < s =27 () + o7 (5) -2 ()]

_2L(30) | 2L (5.0
- A A
1 T x
=+ |20 (5.0) +2°1 (5;.0)] 25
F 12 (50) + 2 (5 (25)
for all x € B;. Generalizing for a positive integer N, we obtain

-2 ()] <15 2 () =1 5 2 () e

for all x € By. The rest of the proof is similar ideas to that of case J = 1. Thus the
theorem is true for J = —1. Hence the proof is complete. 0

The following corollary is an immediate consequence of Theorem 3.1 concerning
the stabilities of (1).

Corollary 3.2. Assume that S and R are positive numbers. Let f : By — By
be an odd function fulfilling the inequality
S;
[z )l < ¢ S ([l + lyll?) ; R#3 (27)
S (e l®ly Il + 1|2 + [[yl¥) ;2R # 3
for all x € By. Then there is only one cubic mapping C : By — By satisfying the
functional equation (1) and
( S
A28 — 1]
Sllzl*
_ < _ e
@)~ F@) <4 55 5a7 (25)
Sllz|[**
EErl

for all x € By.

The following example is to illustrate that the functional equation (1) is not
stable for R = 3 in Corollary 3.2.
Example 3.1. Let L : R — R be a function defined by

T3, if |z| <1
Lz) = { T,  otherwise
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where T" > 0 is a constant, and define a function f: R — R by

s M
flz) = Z L(ng) for all z e R.
M=0

Then f satisfies the functional inequality

|flx+ky)+ f(kx+y)+ f(x —ky) + fly —ka) =K [2f (@ +y) + flx —y) + fly — )]

F2(R = D)+ F0)] — R - D) + )]

AT x 8%(9k* — 5k
< OF =58 (e + 1) (29)

for all z,y € R. Then there are not a cubic mapping such as C : R — R and a
constant B > 0 such that

|f(z) — C(x)| < Blz|? for all x € R. (30)

PROOF. From the definition of f(z), we have
L|LRMr) =T 8T
@IS Y “gm =2 = =
I8M| 8 7
M=0 n=0
Thus, f is bounded. Now, we are going to prove that f satisfies (29).
1
If = y = 0 then (29) is trivial. If |z|> + |y|* > 3 then the left hand side of
AT(9K* — 5k2)

(29) is less than

is a positive integer b such that

1
. Now suppose that 0 < |z|® + |y|® < 3 Then there

1
o S Py <

]v+2 = {b+1’ (31)

1 1
so that 8°|z|* < 3’ 8yl < 3’ and consequently

2N 4 ky), 2" (kx4 y), 2 (o — ky), 2" (y — k), 2" (2 + ),
27 —y), 2 Ny — 2), 2" (@), 2" (), 21 (22), 2" (2y) € (—1,1),
Therefore for each M =0,1,...,b— 1, we have
2M(x + ky), 2Y (kx +y), 2 (& — ky), 2" (y — kx), 2" (2 + ), 2" (2 — y)2Y (y — @),
2M(x),2M(y), 2M (2x),2M (2y) € (—1,1).
and
LM (x + ky)) + LM (kx +y)) + L(2M (z — ky)) + L(2M (y — kx))

i » [2L(2M(gj +y)) + L2Y(z —y)) + LM (y — 33))}
20 = D)LY (@) + DY ()] = (0 = DILEY (20)) + L2Y(20))] = 0
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for M =0,1,...,k — 1. From the definition of f and (31), we obtain that

‘f(fHkry) + f(kx +y) + f(x —ky) + fly —kx) = K> [2f (x +y) + flz —y) + f(y — )]

2K~ D)+ F)] — (2~ D[72s) + F(20)]

< Z SLM‘L(QM(:E +ky)) + L2Y (kx +y)) + L2 (x — ky)) + LY (y — kz))

— R 2LEY (@ +p) + L@Y( — ) + LYy — o)

k2

+2(k' = D)[L(2Y(2)) + LY (9))] = 7 (¥ = DILEY (22)) + L(2Y (2y))]

(k* = D)LY () + L2Y ()] - kz(k‘Q — D[L2Y (22)) + L(2M(2y))]’

1 9k*—5k% 8 9k*—5K* 1 4T x 82(9k* — 5k?)
D R A a2 : (12 + IoF)

+
[\

Thus f satisfies (29) for all z,y € R with 0 < |z]> + |y|* < 1

We claim that the cubic functional equation (1) is not stable for R = 3 in
Corollary 3.2. Suppose on the contrary that there exist a cubic mapping C : R — R
and a constant B > 0 satisfying (30). Since f is bounded and continuous for all
r € R, C is bounded on any open interval containing the origin and continuous at

the origin. In view of Theorem 3.1, C must have the form C(z) = cz® for any x in
R. Thus, we obtain that

(@) < (B +|c]) 2. (32)

But we can choose a positive integer ¢ with ¢7' > B + || .
If x € (O,Qq%l) , then 2Mx € (0,1) for all M = 0,1,...,q—1 . For this z, we get

= L(2Mz) L T(eMg)3
NOEDY or = 8—M=CJT933>(B+|C|)$3
M=0 M=0

which contradicts (32). Therefore the cubic functional equation (1) is not stable in
sense of Ulam, Hyers and Rassias if R = 3, assumed in the inequality (28). O]

Theorem 3.3. Let f: By — By be an even function fulfilling the inequality

1k (2, )l < Lz, y) (33)
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for all x,y € By, where L : B} — [0,00) satifies the condition

’ L(k?NJJ],/{ZNJy)
Nl—I>noo ]{Z4N‘]

=0 (34)

for all x € By. Then there is only one quartic mapping Q : By — By satisfying the
functional equation (1) and
1 &= L(kMz,0)
1Q(z) — f(z)|| < By Z g (35)

_1-J
M= 2

for all x € By with J = +1. The mapping Q is defined by

Q(z) = lim L(k—w

N—oo k4NJ

(36)
for all x € By.

PRrROOF. Changing y by 0 in (33), we reach

| £@) + flka) + f(@) + f(=ka) = & 2 (@) + f (&) + (=)

/{32

+2(k" = 1) f(2) = (K = 1) f (22)|| < L(x,0)  (37)

for all z € B;. Using evenness of f and f(2z) = 2*f(z) in (37), we obtain

|27k + 210) = 4825) + 2060 = 11 (0) = S8 = 520 < L62,0),
[2f (ko) + 2f () — 4k f (@) + 2(k* = 1) f(2) — 4 K*(* = 1) f(2)|| < L(x,0),
|2 (kx) = 2k* f(2)|| < L(=,0), (38)
for all x € By. It follows from (38) and k # 0, +1,
|25 st < 22 (30
for all x € B;. The rest of the proof is similar to that of Theorem 3.1. O

The following corollary is the immediate consequence of Theorem 3.3 concerning
the stabilities of (1).

Corollary 3.4. Assume that S and R are positive numbers. Let f : By — Bs
be an even function fulfilling the inequality

S
[Fu(z, )l < S (=17 + [|yl[F) ; R #4 (40)
S 2Byl + 2|2 + [yl 7)) ; R#2



NON-STABILITIES OF MIXED TYPE EULER-LAGRANGE ... 11

for all x € By. Then there is only one quartic mapping Q : By — By satisfying the
functional equation (1) and

4 S '
STk
S|Jx]]*
1Q(x) — f(z)] < St — K| (41)
Sllz]|**
[ 2|k — K2R]

for all x € By.

The following example is to illustrate that the functional equation (1) is not
stable for R = 4 in Corollary 3.4.

Example 3.2. Let L : R — R be a function defined by

Tzt if |z] <1
L(z) = { T,  otherwise

where 7" > 0 is a constant, and define a function f : R — R by

— L(kM
flz) = (kwx) forall z€R.

M=0

Then f satisfies the functional inequality

|f(z+ky) + f(kz +y) + f(z — ky) + fly — kz) = K> [2f(x + y) + f(z —y) + f(y — 2)]

2R D[ (0) + T)] — o (8 — D7 (22) + f(20)

KT (9k* — 5k?)
= 2(kt-1)

(I + 1y[*) (42)

for all x,y € R. Then there are not a quartic mapping Q : R — R and a constant
B > 0 such that

|f(z) — Q(z)| < Bla|* for all x e R. (43)
Theorem 3.5. Let f: By — By be a function fulfilling the inequality
[Ex (2, y)|| < Lz, y) (44)

for all x,y € By, where L : B — [0,00) satisfies the conditions (12) and (3/]),
for all x € By. Then there are only one cubic mapping C : By — By and only one
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quartic mapping Q : By — By satisfying the functional equation (1) such that

1]1 & L(2M7z.0)  L(—2M7%,0
| f(z) = C(z) — Q)] < 391 Z ( (23Mi ) ( 23MJ$ ))
M=151
1 < [(L(EM72,0) L(-kM/z,0)
+ ok4 Z ( LAMJ + LAMJ > (45>
M=1=J

2

for all x € By with J = £1. The mappings C and Q are defined in (14) and (36)
respectively, for all x € By.

PROOF. Assume that

for all x € By. It is easy to verify that

f6<0) =0 and fc(_x) = _fc(x)’

for all x € B;. By Theorem 3.1 and definition of f., we have

= [ L(2M/z,0) L(—2MJ35,O)) (46)

1 1
Ifefe) = C@) < 5+ 5 Z( T+

_1-J
M=

for all z € B;. Also, assume that

f(@) + f(=2)

fq(ZL') = 9 )

for all x € B;. It is easy to verify that

fo(0) =0 and  f(==z) = fy(2),
for all € B,. By Theorem 3.3 and definition of f;, we have

1 1 & (L(EM7z,0) L(—=kM7z,0
o) -l < 55 X (M + oY) an
fyme
for all x € B;. Let us define
f(@) = fe() + folx) (48)
for all x € By. Then by (46), (47) and (48), we arrive our result. O

The following corollary is an immediate consequence of Theorem 3.5 concerning
the stabilities of (1).
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Corollary 3.6. Assume that S and R are positive numbers. Let f : By — Bs
be a function fulfilling the inequality
S;
1z, )l < < S ([l + 11yl 5 R+#3,4 (49)
S (Il + 2] + [[yl*F) s 2R # 3,4

for all x € By. Then there are only one cubic mapping C : By — Bs and only one
quartic mapping Q : By — By such that satisfying the functional equation (1) and

(5[ 1 RN
2 ()\|23 1] o= 1\)’
S|l" 1 _
>\ N2 2R 2\k4—kR])’
T N S
| T2 U o o — e )

1/ (2) = C(x) = Q)| < 4 (50)

for all x € By.
3.2. Radu’s method.

Theorem 3.7. Let f : By — By be an odd function fulfilling the inequality (11)
for all x,y € By, where L : B} — [0, 00) with the condition

L0z, (Yy)

L oy
where
2 if I=0,
Ef_{% if 1=1 (52)

holds for all z,y € By. Assume that there exists L = L(I) such that for the function
25
L(2,0)= =L (—,0)
(#.0) = TL 3
we have the following property

1

@L(&x, 0) = LL(w,0), (53)
for all x € By. Then there is only one cubic mapping C : By — By satisfying the
functional equation (1) and

le@ - sl < (£

1-1

E) L(z,0) (54)

for all x € By.

Proor. Consider the set

A={f/f:B1— By, f(0)=0}
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and introduce the generalized metric d : A x A — [0, o0] as follows:
d(f,9) = inf{w € (0,00) : [[f(2) = g(z)[| < w L(z,0), 2 € B }. (55)

It is easy to show that (A, d) is complete with respect to the defined metric. Let us
define the linear mapping U : A — A by

US () = g hollr)
I
for all » € By. For given f, f, € A and d(f, f.) € w that is
£ () = fal®)|| < w L(,0),2 € By.
So, we have
1f(z) = fa(2)|| =

< %L(ﬂ[{t, O)
é[

1 1
@f(ﬁﬂ) - E—;}fa(fﬂ)

= LwL(x,0)
for all x € By, that is,

dUf,Ufa) < Ld(f, fa), YV [ fa€ A

This implies U is a strictly contractive mapping on A with Lipschitz constant L.
For the case I = 0, it follows from (55),(18) and (53) , we reach

|Uf(z) = f(2)]| < £ L(2,0),2 € By. (56)
Hence,
dUf, )<L  feA (57)
For the case I = 1, it follows from (55),(23) and (53), we get
If (@) = Uf(@)|| < L(2,0),  x€B. (58)
Thus, we obtain
d(f,Uf) < L', feA (59)

Hence, from (57) and (59), we arrive
dUL <L feA (60)

where I = 0,1. Hence, property (FP1) holds. It follows from property (FP2) that
there exists a fixed point C of U in A such that

C(x) = lim

N—o0

1
z?_Nf (") (61)
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for all z € By. In order to show that C satisfies (1), replacing (z,y) by ((¥z, (Ny)
and dividing by /3" in (11), we have

1 1
(3N HFk(@Vz’éﬁvy)H < Z,’—NL(@VJZ,%Vy)
I

for all z,y € B;. Approaching N — oo and using the definition of C, (51) in the
above inequality, we can see that C(x) satisfies the functional equation (1) for all
x € By. By property (FP3), C is the unique fixed point of U in the set

A={CeA:d(fC) < oo},
such that
|f(x) —C(x)|| < wL(x,0),x € By.
Finally by property (FP4), we obtain
If(z) =C@)l| < [[f(z) —Uf(z)|,z € By
This implies

ﬁl_l
<
—1-L

1f(x) = C@)]
which yields

1) - cl < (1=

So, the proof is completed. O

) L(x,0),z € By.

Using Theorem 3.7, we prove the following corollary concerning the stabilities of
(1).

Corollary 3.8. Assume that S and R are positive numbers. Let f : By — Bs
be an odd function fulfilling the inequality (27), for all x € By. Then there is only
one cubic mapping C : By — By satisfying the functional equation (1) and
( S 23

A28 =1

S 2°||2||*
A28 — 2R|
S 2| [|*" |

IC(z) — f(a)]| <

for all x € By.

PROOF. Let
S5
L(z,y)=q S ([l +1lyl1?);
S ([ * Iyl + [l ]2+ |yl[*7) ;
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for all z,y € B;. Now

(S
1 S
eGSR I
I
S

3N
ty
(—0as N — oo,

=<¢ —0as N — oo,

(. —0as N — oo.

Thus, (51) holds. But, we have

x
has the property
1
£—3L(€I:c,0) =L L(z,0)
I
for all x € B;. Hence,
(5 23
)\ 9
23 T S 23
L(z,0) = TL (5,0> = A_2R\| I
S 23 oR
=l
for all x € By. It follows from (63),
4 93
I S—,
1 S 23
EL@IJ%O) = 5?73T||$||R
.923
@R 3T||$||2R

Hence, the inequality (83) holds for
(). L= if I=0and L= L5 if [ =1;
I

(i). £L=1(7"for R<3if [ =0and L= = for R>3if [ = 1;
I

(iii). £= (7" for 2R > 3if [ = 0 and L = = for 2R > 3if [ = 1.
I

{161 11 ylI™ + {1162 + 116791127} }
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Now, from (83), we prove the following cases for condition (7).

L=(;*T=0
L=231=0
L=231=0
| f(z) —C(z) |
1-1I
< (5= ) L(z,0)
o (2—3)1—0) 8 23
— 123 X
_ (273 ) 5 23
= \1-2-3 X
_ [ 528 )
— \ X&)

[,:g%g,lzl
I
522%3,[:1
£:23,I:1
| f(z) —C(x) ||
< (£%) L(z,0)
(23)1—1) ' S 23
1—23 p)

= () 5

- ()
= a2

Also, from (83), we prove the following cases for condition (ii).

L=(F3R<3,1=0

L=2F3 R<31=0
L=2"3 R<31=0

| f(z) —Cla) |
< (£7) tlw,0)
= (&5 ) - $& 1117
= (s ) - Sllel|®

2R .S 23
— \23-2F 2R

[Edls

EZ@%S,R>3,I:1
L=5,R<31=1
L=2RR>31T=1
| f(z) =C(z) |

< (£%) tlw,0)

23—R 1-1 3
b ) - Sl

= (=) Samllll"

R 3
= (o) - Sl

Finally, the proof of (83) for condition (iii) is similar to that of condition (ii). Hence

the proof is complete.

0

Theorem 3.9. Let f : By —> By be an even function fulfilling the inequality
(33) for all x,y € By, where L : B? — [0, 00) with the condition

where

LYz, 07 y)

i ! (o)
k I=0,
61_{- if IT=1 (65)

holds for all x,y € By. Assume that there exists L = L(I) such that the function

with the property

L(z,0) =

Lo

1

(66)
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for all x € By. Then there is only one quartic mapping Q : By — By satisfying the
functional equation (1) and

o) - 1l < (£ ) 1.0 (67)

for all x € By.

PRrROOF. The proof of the theorem is similar to that of Theorem 3.7 by define
the linear mapping as U : A — A by

1
Uf(l‘) = €_4f(I<€Ix)v
I
for all x € By. For given f, f, € A O

Using Theorem 4.9, we prove the following corollary concerning the stabilities of

(1).

Corollary 3.10. Assume that S and R are positive numbers. Let f : By — Bs
be an even function fulfilling the inequality (}0), for all x € By. Then there is only
one quartic mapping Q : By — By satisfying the functional equation (1) and
( S '

21k — 1|
Slz||*
_ < ol
196) - @)l < 4 g (65)
Sz[]**
2|k‘4 _ k2R|’

\

for all x € By.

PRrOOF. The proof of the corollary is similar ideas of to that of Corollary 3.8.
Hence the details of the proof are omitted. O

Theorem 3.11. Let f : By — By be a function fulfilling the inequality (/4), for
all v,y € By, where L : B — [0,00) satisfies the conditions (51) and (64), where
1 is respectively defined in (52) and (65) that holds for all x,y € By. Assume that
there exists L = L(I) such that the functions

L(z,0)= %L (g,O) and L (z,0)= Q;L (g,O)

satisfies the properties (53), (66) and

%L(m, 0) = £L(w,0) (69)
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for all x € By. Then there are only one cubic mapping C : By — By and only one
quartic mapping Q : By — By satisfying the functional equation (1) and

. .c) (L(x,0) + L(~x,0)) (70)

Hﬂ@—d@—Q@NS(
for all x € By.

PROOF. By the definition of f.(x) and f,(x) in Theorem 3.5 and with the help
of Theorems 3.7 and 4.9, we arrive our desired result. O

Using Theorem 3.11, we prove the following corollary concerning the stabilities
of (1).

Corollary 3.12. Assume that S and R be positive numbers. Let f : By — By
be an even function fulfilling the inequality (49) for all x € By. Then there is only
one quartic mapping Q(x) : By — By satisfying the functional equation (1) and

(598 s
NP —1 ok

S 23||x||® Sl=|*
NP — 28] T 2kt — kA
S 2%||=|? Sllz[|*"
L )\|23_22R| 2’k4—/§2R’7

If(z) = C(z) = Q)| < S (71)

for all x € By.

4. Stability in quasi beta Banach space

In this section, we investigate the generalized Ulam-Hyers stability of the func-
tional equation (1) in Quasi Beta Banach Space. To prove stability results, let us
take B; be a normed space and By be a Quasi Beta Banach Space.

4.1. Hyers Method.

Theorem 4.1. Let f : By — By be an odd function fulfilling the inequality (11)
for all z,y € By, where L : B — [0,00) with the condition (12) for all x € B.
Then there exists only one cubic mapping C : By — By satisfying the functional
equation (1) and

o) - f) < X Y KLY (72

_1-J
M= 2

for all x € By with J = +1 and X\ = 2k*(k? — 1), where the mapping C is defined in
(14) for all x € B;.
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PROOF. From (16), we arrive

X

1 (k* = 1) f(2z) + 2k* (K* — 1) f(=)|| < L(z,0) (73)

for all z € By. It follows from (73) and since k # 0, £1 that

f(2x) H L(z,0)
— f(x)|| < 74
1552 =10 < G (74)
for all z € B;. Let A = 2k* (k* — 1) in above inequality, we arrive
f(2x) L(z,0)
|82 st < 2552 (75)
for all x € B;. The rest of the proof is similar to that of Theorem 3.1. ]

The following corollary is an immediate consequence of Theorem 4.1 concerning
the stabilities of (1).

Corollary 4.2. Assume that S and R are positive numbers. Let f : By — By
be an odd function fulfilling the inequality (27) for all x,y € By. Then there exists
a one and only cubic mapping C : By — By satisfying the functional equation (1)
and
( KNfls
AB|23 — 1)

KV S]|z]|*
AB|23 — 2RB|”
KN_IS’ ’:L" |2R.
)\,8|23 _ 22Rﬂ| !

IC(z) = f(a)]| < (76)

for all x € By.

Theorem 4.3. Let f : By —> By be an even function fulfilling the inequality
(33) for all x,y € By, where L : B} — [0,00) satifies the condition (3]) for all
x € Bi. Then there is only one quartic mapping Q : By — By satisfying the
functional equation (1) and

KN &N L(EM72,0)
(2 k4)6 AMJ

_1-J
M= 2

19(z) — f@)l| < (77)

for all x € By with J = +1, where the mapping Q(x) is defined in (36) for all
T € Bl.

PRrROOF. From (38), we arrive

2f (k) — 2 ()| < L(.0) (79)
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for all = € By. It follows from (78) and since k # 0, £1 that

f(kx) L(z,0)
— < 79
|15 - 1w < oY (79)
for all x € B;. The rest of the proof is similar to that of Theorem 3.1. O

The following corollary is an immediate consequence of Theorem 4.3 concerning
the stabilities of (1).

Corollary 4.4. Assume that S and R are positive numbers. Let f : By — By
be an even function fulfilling the inequality (40) for all z,y € By. Then there is only
one quartic mapping Q(x) : By — By satisfying the functional equation (1) and

( KNt g
2R K — 1|
Q < AQkL S”x”R 80
1901 N2 Gy (0
Lk 5||50||2R
(2k4)7 [kt — k2R3

\

for all x € By.

Theorem 4.5. Let f : By — By be a function fulfilling the inequality (/4) for
all z,y € By, where L : B} — [0,00) satifies the conditions (12) and (34) for all
x € By. Then there are only one cubic mapping C : Bi — By and only one quartic
mapping Q : By — By satisfying the functional equation (1) and

I0) - e - ol < 55 A > (F ™ + M)

_1-J
M==

1 N (L(kM2,0)  L(—kM7z,0)
k4)/3 Z ( LAMJ + EAMJ (81)
M= 1;_7

for all x € By with J = +1, where the mappings C(x) and Q(z) are defined in (14)
and (36), respectively, for all x € By.

PROOF. The proof is similar lines to that of Theorem 3.5. 0]

The following corollary is an immediate consequence of Theorem 4.5 concerning
the stabilities of (1).

Corollary 4.6. Assume that S and R are positive numbers. Let f : By — By
be a function fulfilling the inequality (49) for all x,y € By. Then there are only one
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cubic mapping C : By — By and only one quartic mapping Q : By — Bsy satisfying
the functional equation (1) and

([ KV 5 L it |
28 \ M3 —1] " 2P kd — 1)
KN Sljz|[" 1 k!
_ — < ;
[f(z) = C(z) — Q(z)|| < 98 A23 — 2R5‘ + (2k4)’6 |kt — kRB| '
KN S|z|]*" 1 n K :
\ 26 A|23 = 22R7] (o) |t — j2R0| )

(82)
for all x € B;.

4.2. Radu’s method. The proof of following theorems and corollaries are sim-
ilar lines to that of Section 3.2.

Theorem 4.7. Let f : By — By be an odd function fulfilling the inequality
(11), for all z,y € By, where L : B — [0, 00) satisfies the condition (51) and {; is
defined in (52) such that holds for all x,y € By. Assume that there exists L = L(I)
such that the function

L) =21 (f 0)
) >\B 2 9
satisfies the property (53), for all v € By. Then there is only one cubic mapping
C : By — By satisfying the functional equation (1) and

£1—I
1-L

IC@) - f@)l| < ( ) L(,0) (83)

for all x € By.

Corollary 4.8. Assume that S and R are positive numbers. Let f : By — Bs
be an odd function fulfilling the inequality (27), for all x € By. Then there is only
one cubic mapping C : By — By satisfying the functional equation (1) and

(52
NP 1|
S 23|x||®
le@) = £ < 3 Jarar g (34)
5 2l
No|28 — 2B

\

for all x € By.

Theorem 4.9. Let f : By — By be an even function fulfilling the inequality
(33), for all x,y € By, where L : B? — [0,00) satisfies the condition (64) and (;
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s defined in 4FMaq.1a such that holds for all x,y € By. Assume that there exists
L = L(I) such that the function

1
L(z,0)= 5L (go>

with the property (66) for all x € By. Then there is only one quartic mapping
Q : By — By satisfying the functional equation (1) and

1-1

o) - @l < ({5 ) w0 (55)

for all x € By.

Corollary 4.10. Assume that S and R are positive numbers. Let f : By — Bs
be an even function fulfilling the inequality (}0), for all x € By. Then there is only
one quartic mapping Q : By — By satisfying the functional equation (1) and

( S
(2k4)” [k — 1
Sla||

(27| — k|
Slla "

| (297 [kt — Kk2R5)

I

1Q(z) — f(2)]| <

for all x € By.

Theorem 4.11. Let f : By — By be a function fulfilling the inequality (44),
for all x,y € By, where L : B3 — [0,00) satifies the conditions (51) and (6), and
U1 is respectively defined in (52) and (65) that holds for all x,y € By. Assume that
there exists L = L(I) such that the functions

1 x 23 rx
o0 =a50) ma e0= 2 (50
(z,0) 5L 0) and L(z,0) wLl 5 0
with the properties (53) and (66), for all x € By. Then there are only one cubic
mapping C : By — By and only one quartic mapping Q : By — By satisfying the
functional equation (1) and

I50) - C) - QI < g5 (1= ) W0 + L-00) 8D

for all x € By.

Corollary 4.12. Assume that S and R are positive numbers. Let f : By — Bo
be an even function fulfilling the inequality (49), for all x € By. Then there is only
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one quartic mapping Q(x) : By — By satisfying the functional equation (1) and

K(_s» s |
20\ M[28 — 1] (2647 |kt — 1] )
K (82" Slxll"
_ _ < - .
||f(37) C(.Q?) Q(Q?)” = 98 )\5‘23_2R6| (2k4)5|k4—]€R5| ) (88)
K (82" S||=[|** ,
\ 28 )\5|23 _ QQRB’ (2]64)6 ‘k4 . k2RB| )

for all x € By.

5. Stability in fuzzy Banach space

In this section, we investigate the generalized Ulam-Hyers stability of the func-
tional equation (1) in fuzzy Banach spaces. To prove stability results, let us take
Bs, (Bi,N) and (B, N') are linear space, fuzzy normed space and fuzzy Banach
space, respectively.

5.1. Definitions on fuzzy Banach spaces.

Definition 5.1. Let X be a real linear space. A function N : X x R — [0, 1]
(so-called fuzzy subset) is said to be a fuzzy norm on X if for all z,y € X and all
s,t € R,

(FNS1) N(z,c¢) =0, for ¢ <0;

(FNS2) x=0if and only if N(z,c) =1, for all ¢ > 0;

(FNS3) N(cz,t) :N(x, ﬁ) if ¢ # 0;

(FNS4) N(x+vy,s+t) > min{N(z,s), N(y,t)};

(FNS5) N(x,-) is a non-decreasing function on R and lim;_,o, N(z,t) = 1;
(FNS6) for x # 0, N(x,-) is (upper semi) continuous on R.

The pair (X, N) is called a fuzzy normed linear space. One may regard
N(X,t) as the truth-value of the statement the norm of x is less than or equal to
the real number ¢’.

Example 5.2. Let (X, || ||) be a normed linear space. Then
t

N(z,t)= (t+Izl’

0, t<0, ze€X

t>0, relX,

is a fuzzy norm on X.

Definition 5.3. Let (X, N) be a fuzzy normed linear space. Let {z,} be a
sequence in X. Then {z,} is said to be convergent if there exists z € X such that
lim N(z,—a,t) =1, for all t > 0. In that case, z is called the limit of the sequence

n—oo

{z,} and we denote it by N — lim z,, = z.
n—oo
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Definition 5.4. A sequence {x,} in X is called Cauchy if for each ¢ > 0 and
each t > 0, there exists ng such that, for all n > ng and all p > 0, we have
N(zpip — Tp,t) > 1 —e.

Definition 5.5. Every convergent sequence in a fuzzy normed space is Cauchy.
If each Cauchy sequence is convergent, then the fuzzy norm is said to be complete
and this fuzzy normed space is called a fuzzy Banach space.

Definition 5.6. A mapping f : X — Y between fuzzy normed spaces X and
Y is continuous at a point xq if, for each sequence {x,} covering to zy in X, the
sequence f{z,} converges to f(xg). If f is continuous at each point of xg € X, then
f is said to be continuous on X.

5.2. Hyers method.
Theorem 5.1. Let f : By — By be an odd mapping fulfilling the inequality

N(Fk($,y),8) 2-/\// (L(x>y)75) (89>

J
for all z,y € By and s > 0, where L : B2 — B3, 0 < (%) < 1 and the following

conditions hold

dim N7 (L (2772, 27y)  22s) = 1 (90)
N (L (272,27y) ,s) > N (t'L(z,y), s) (91)

for all x,y € By and all s > 0. Then there is a unique cubic mapping C : By — By
which satisfies (1) and

, s5[23 — ¢
N (1) =) > 4 (L0, B (92)
for all z € By with J = 41 and X\ = 2k* (k* — 1). The mapping C is defined by
Jim A (C(x) _ éﬁﬁs) 1 (93)

for all x € By.

PROOF. Changing y by 0 in (89), we reach

N (f(z) + f(kx) + f(2) + f(=kz) = k*[2f (2) + f(2) + f(=2)]

]{32

+2(k* — 1) f(x) 1 (k* —1)f(2z), s) > N'(L(z,0),s) (94)
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for all x € B;y. Using oddness of f in (94) and it follows from (94) that

k‘2

N (21(0) = 20240 + 2061 = D) = L0 = DF20),5) 2 N (L (0,0).9):

or
k2
Af(—zxk%—nf@x)+2k2@?—1)f@%s);zN%L(Loys) (95)
for all = € By. It follows from (95) and k # 0, £1,
f(2x) s :
_ >
N (187 - o) gy ) 2V @09 (96)
for all z € B;. Set A = 2k? (k* — 1) in the above inequality, we have
2
N(f<23x) _f(x)vi) EN/ (L(:L‘,O),S) (97)
for all z € B;. Replacing x by 2V in (97), we obtain
2N+1
N(%—f@j\[@,;) >N (L (2V2,0) ,s) (98)
for all x € By and s > 0. Using (91), (FN.S3) in (98), we arrive
PN s :
LSl 2 > 2
A/( e — F@V2), 3 ) 2N (L (,0), %) (99)
for all x € By and s > 0. It is easy to verify from (99), that
fERNT)y  f(2N2) s s
N ( 23(N+1) 93N 7\ 93N 2N <L (2,0, t_N> (100)

for all z € By and s > 0. Switching s by t"s in (100), we get

N (f(2N+1x) 1@V < ; )N i) S N (L (@.0). 5 10)

93(q+1) 93N 923 A

for all x € By and s > 0. It is easy to see that

CERR  [Ca JCea) 102

23N 23(r+1) 23r

r=0
for all € B;. From equations (101) and (102), we have

(o B ) 3) U (-2 1))

r=0

> min U {N'(L(z,0),s)} =N"(L(z,0),s)
= (103)
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for all z € By and all s > 0. Replacing x by 2Pz in (103) and using (91), (FNS3),
and substituting s by tF's, we obtain

23(N+P) 93P 23

N <f<2N+Px) - f(QPx)’ i (i)@) > N (L(z,0),s) (104)

r=

for all z € By and all s > 0 and all P > N > 0. Using (FNS3) in (104), we obtain

2N+P 2P A
N (fés(NJrPL)E) o f(23px) ’ S) > N"| L(x,0), M%r (105)
5 ()

N r
. t
for all x € By and s > 0. Since 0 < t < 23 and g (§> < oo, the Cauchy
0

f(2¥x)

923N

criterion for convergence and (F'N S5) implies that { } is a Cauchy sequence

in (B, N'). Since (Ba, N') is a fuzzy Banach space, this sequence converges to some
point C(z) € B,y. So one can define the mapping C : By — B; by

N—oo 23N

lim A (C(w) _ (ZN:"),S) —1 (106)

for all x € By and all s > 0. Letting P =0 and N — oo in (105), we get

N (C(x) = f(x),s) > N <L (x,0)>—5 )\(223—15))

for all x € By and all s > 0. To prove C satisfies the (1), replacing (z,y) by
(2N, 2Ny) in (89), we obtain

N (C(z,y),s) =N <iFk(2Nm,2Ny),s> >N (L (2Vz,2Ny),2*Ys)  (107)

923N
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for all z,y € By and all s > 0. Now,

N(C(x + ky) + C(kx +y) + C(x — ky) + C(y — kx)
—k*[2C(z +y) - C(z —y) = C(y — 2)]

= 2(k* — 1)[C(x) + Cy)] - = (K — 1)[C(2x) +C(2y)], 5)

> min{

7~
Q
&
+
w
&
|
“&‘H
2
=
)
=
8
+
T
s

Clkx +y) — ZSLNf(QN(kI +v)), %

z =z z =z =z =z =z =z =z =z 2=

T e R R R e W e e g
no
/\ IT
aQ
<
|
=
+
E
2
KH
S
=
<
|
=
K
~—

=

Q;J,LNf@N(x + ky)) + 23%]@(21\/(]{% +y)) + 23%]6(21\/@ ~ ky)

g /2~ ke )? | G 2V 4 ) - g5 (2o =)

o =) = 200 - 1) | 2V + 55 2 )

e {%f@N(zx» " ?LNf(2N(2y))} =)} (108)
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for all ,y € By and all s > 0. Using (106), (107), (FNS5) and (108), we reach
N(C(m + ky) + C(kx +y) + C(x — ky) + C(y — kx)
— K 20(z +y) - Clz —y) = Cy — 2)]

2

— 2kt~ D[C() +Cw)] — =k ~ i) +e2y).5)

>min{1,1,1,1,1,1,1,1,1,1, 1, N" (L (2Vz,2"y) ,2*"s) } (109)
for all z,y € B; and all s > 0. Approaching N tends to infinity in (111) and applying
(91), we get

N(C(x +ky) + C(kx +y) +C(x — ky) + C(y — kz) — k*[2C(x + y) — C(z — y)
k2

—Cly — )] = 2(k" = D[C(z) + Cy)] = (K = D[C(2z) + C(2y)], 8) =1 (110)

for all z,y € By and all s > 0. Using (FNS2) in (110), it gives
C(z + ky)+C(kx +y) + C(x — ky) + C(y — kx)

=k [2C(x +y) +C(x —y) +C(y — 2)]

F2(k ~ D[C() +C) + o ( — DIC(r) +C(2)]

for all z,y € B;. Hence C satisfies the functional equation (1). The existence of C is
unique. Indeed, if C’ be another cubic functional equation satisfying (1) and (93).

So,

N(C(:c)—C'(x),s):N(C(2 v ¢ )

23N 23N

= in { N (C(2Nx) f(2Na) ﬁ) W <C/(2Nx) j2Va) 5) }

23N 23N ’2 23N 23N ’2

N aney S A28 —1)23N
2N’<L(2 z,2M0) , 53

s A28 — £)23Y
23tN 2

A\ (L(m,o),

for all x € B; and all s > 0. Since
s A28 — )23V
N TR

3 1\93N
lim A\ (L (z,0), S22 —1)2 ) =1

:OO7

we obtain

N—oo 23tN 2
Thus
N(C(z) —C'(z),s) =1
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for all x € By and all s > 0, hence C(x) = C'(z). Therefore C(x) — C'(x) is unique.
Hence for J =1 thextheorem holds.
Replacing z by 3 in (97), we achieve

23
N fla) —2° (f> ) >N <L (f,o),s> (111)
2 A 2
for all x € By. The rest of the proof is similar ideas to that of case J = 1. Thus the
theorem is true for J = —1. Hence the proof is complete. O

The following corollary is an immediate consequence of Theorem 5.1 concerning
the stabilities of (1).

Corollary 5.2. Assume that S and R be positive numbers. Let f : By — By
be an odd function fulfilling the inequality

N (S, s)
N (Fi(z,y),5) = ¢ N (S {2l +lyll"},s) R #3;
NS {2l 1yl + Ll PR+ NylPF}}s) . 2R #3;

(112)

for all x,y € By, then there is only one cubic mapping C : By — By satisfying the
functional equation (1) and
N (23 S,s A28 —1]),
N (f@) = Ca),s) 2 { N7 (28 Sllal|,s A2} — 27) (113)
N7 (28 S|||[?R, s A28 — 228])

for all x € By.
Theorem 5.3. Let f: By — By be an even mapping fulfilling the inequality

N(Fk(I,y),S) ZN/ (L(I7y)78) (]‘14>
J
for all x,y € By and s > 0, where L : B? — Bz with 0 < <%> < 1 and the
conditions
: / JN_. 1.JN 3JN ) _
dim N7 (L (k7 k") B s) =1 (115)
N (L (K2, ky),s) > N" (t'L (z,y),s) (116)

forallz,y € By and all s > 0. Then there is a unique quartic mapping Q : By — By
which satisfies (1) and

4 _
N (@) - @) 2 a7 (w0, 2= (117)

for all x € By with J = £1. The mapping Q(x) is defined by
Jim N <Q(m) - fgzjf),s> ~1 (118)

for all x € By.
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PROOF. Changing y by 0 in (114), we reach
N (f(a) + f(kz) + f(z) + f(—ka) — k* [2f (x) + f(2) + f(-2)]

2

20kt — 1) f(x) — %(k? —1)f(22), s) > N'(L(2,0),s) (119)

for all x € By. Using evenness of f in (119) and it follows from (119) that

k}2

N <2f(ka:) +2f(x) — 4k f(x) + 2(k* — 1) f(2) 1 (K* — 1) f(2z), 3)

> N'(L(x,0),5);

or

N (2f (k) +2f (z) — 4K f () 4+ 2(k* — 1) f(z) — 4 K*(K* — 1) f(z), )

> N'(L(z,0),s);

or

N (2f(kz) — 2k* f(z),s) > N' (L (z,0),s) (120)
for all x € By. It follows from (120) and since k # 0, =1 that

N (L2~ o) ) 2 L 0 (121)

for all x € B;. The rest of the proof is similar to that of Theorem 5.1. U

The following corollary is an immediate consequence of Theorem 5.3 concerning
the stabilities of (1).

Corollary 5.4. Assume that S and R are positive numbers. Let f : By — By
be an even function fulfilling the inequality

N (S, s)
N (Fi(z,y),5) = ¢ N (Sl +yll"},s) R #4;
NS {2l Iyl + Ll PR+ NylPF}}s) . 2R # 4

(122)

for all x,y € By, then there is only one quartic mapping Q : By — By satisfying
the functional equation (1) and

N (K* S, 2 s|k* —1]),
N (f(z) = Q(x),s) > ¢ N (k* S||z||*,2 s[k* — k7]) (123)
N (K 5][|[2, 2 slk* — k2R))

for all x € By.

Theorem 5.5. Let f: By — By be a mapping fulfilling the inequality
N (Fi(z,y),5) 2 N (L (z,y) , ) (124)
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s\ s\’
for all z,y € By and s > 0, where L : B — B3, 0 < <§> <1;0< <ﬁ> <1,
and the conditions (90), (115), (91), (116) hold, for allz,y € By and all s > 0. Then

there exists a unique cubic mapping C : By —> By and a unique quartic mapping
Q : By — By which satisfies (1) and

N (f(z) = C(z) — Q(z), )
> min {N’ (L (2,0), S'i;”) N <L(—x,0) Sz - t') ,

23 7
4 4 _
Nl <L (1’,0),%) aNl (L (_IE,O),%)} (125)

for all x € By and J = £1. The mappings C and Q are defined in (93) and (118),
respectively.

PRroor. If we define

f@) = f(=2)

folw) = ==———— forall —ze€B
it follows that
fe(0)=0 and  fo(—2) = —fc(x) forall — z€By.
So, by definition of fo(z) it is easy to verify that
N (Fe,(z,y),s) = min{N (f(z,y), s) . N (f(—z,—y),s)} (126)

for all z,y € By and s > 0. Hence, by Theorem 5.1,

N (fe(x) = C(x), 5) > min {/\/’ (L (£.0). Sl22‘°; - tl) W (L(_W | s|22?; - t|)}
! ! (127)

for all x € B; and s > 0. Also, if we define

fola) = 1B = T=2)

5 for all x € B,

and it follows that
fo(0)=0 and  fo(—x) = fo(z) forall — z € B;.
So, by definition of fg(x) it is easy to verify that
N (Fo,(2,9),5) = min (N (f(,1), 5) N (F(—a,~9),5)}  (128)
for all z,y € By and s > 0. Hence, by Theorem 5.3,

N (fo(x) — Q(z), 5) > min {N’ (L (x,0)7%i_t|) N (L<_x70) 2 SVZi— t|

(129)

)}
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for all x € B; and s > 0. Define
f(x) = fo(x) + fo(x) (130)
for all x € By. Using (127), (129) in (130), we arrive
N (f(x) = Clx) — Q(x), 25)
=N (fo(z) + fo(x) = C(x) — Q(x), 2s)
> min {N (fe(z) - C(z),s) . N (fo(z) — Q). s)}

3 _ 3 _
> min {N’ (L (2,0), 22 t|) N (L(—x,O) 512 tl) ,

23 23

4 4 _
N/ (L(.’L‘,O),%) 7Nl (L(_x70)7W)}

for all x € B; and all s > 0. O

The following corollary is an immediate consequence of Theorem 5.5 concerning
the stabilities of (1).

Corollary 5.6. Assume that S and R are positive numbers. Let f : By — Bs
be an even function fulfilling the inequality

N’ (S, s)
N (Fi(z,y), s) = { NS {2l + [y} s) R#3,4;
N (S U1 1l + { ] PE + 1yl PP} s) . 2R #3,4;

(131)

for all x,y € By, then there is only one quartic mapping Q : By — By satisfying
the functional equation (1) and

N ([23 + kY S, s [N23 — 1] + 2]k = 1]]),
N (@) - Q(a).s) > { A (22 + K1) e, s [A20 — 27+ 2kt — k]
N’ ([23 + k4 S||z||*R, s [)\|23 — 22| 4 9|kt — k:2R|D ,
(132)
for all x € By.

5.3. Radu’s method.

Theorem 5.7. Let f : By — By be an odd function fulfilling the inequality
(89), for all x,y € By and all s > 0, where L : B} — [0, 00) with the condition

lim N (L) z, 07y), 63) =1 (133)
N—oo

=

where
if I =0,
if I=1

i DN

(134)
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holds for all x,y € By. Assume that there exists L = L(I) such that the function
A
L ) - _L <_) >
(z,0) L5 0
satisfies the following property

N (%L(ﬁ[&?, 0), 8) =N (LL(z,0), s) (135)

T
for all x € By and s > 0. Then there is only one cubic mapping C : By — By
satisfying the functional equation (1) and

1-1

N(f(l’)—C(ZE),S)ZN’(1_£L<$,0)7S), (136)

for all x € By.

PRrRoOF. Consider the set
A={f/f:B1 — By, f(0)=0}
and introduce the generalized metric d : A x A — [0, 0] as follows:

d(f,g) =inf{w € (0,00) : N (f(z) — g(x),s) > N' (w L(x,0),s),z € By,s > 0}.
(137)
It is easy to show that (A, d) is complete with respect to the defined metric. Let us
define the linear mapping U : A — A by

1
Uf(@) = = fultra),
1
for all x € B,. For given f, f, € A and
N (f(z) = fuo(x),s) > N (w L(,0),s),z € By and all s > 0.

So, we have

N (F(@) = fule),s) = N (%ﬂm) - hltio) )

for all x € B; and s > 0, that is,
AU, Uf.) < Ld(f, fa), for all fifa € A

This implies U is a strictly contractive mapping on A with Lipschitz constant L.
For the case I = 0, it follows from (137),(97) and (135), we reach

N Uf(x)— f(x),s) >N (L L(x,0),s), xz€Bj,s>0. (138)
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Hence,
dUf, )<L  feA (139)
For the case I = 1, it follows from (137),(111) and (135), we get
N (f(x)=Uf(x),s) >N (L(x,0),s), x € By, s> 0. (140)
Thus, we obtain
d(f,Uf) <L fe A (141)
Hence, from (139) and (141), we arrive
dUf, f) <L, feA, (142)

where I = 0,1. Hence, property (FP1) holds. It follows from property (FP2) that
there is a fixed point C of U in A such that

(3N g), (143)

for all z € B;. In order to show that C satisfies (1), the proof is similar lines to that
of 5.1 By property (FP3), C is the unique fixed point of U in the set

A={CeA:d(fC) < oo},
such that
N (f(z) - C(z),8) > N (wL(z,0),5), x€Bi,s>0.
Finally, by property (FP4), we obtain
N (f(z) —C(x),s) > N'(f(z) —Uf(z),s), x€Bis>0.

This implies

N (f(z) - C(z),s) ZN((1_2) L(:v,O),s) v €By,s> 0.

So, the proof is completed. O

Using Theorem 5.7, we prove the following corollary concerning the stabilities of

(1)-
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Corollary 5.8. Assume that S and R are positive numbers. Let f : By — Bs
be an odd function fulfilling the inequality

N (S, s)
N (Fi(z,y),8) = ¢ N (S{ll=[|™ +1lyll"} . s) R#3;
NS {1yl + el P+ 1ylP7 )} s), 2R # 3,

(144)

for all x,y € By, then there is only one cubic mapping C : By — By satisfying the
functional equation (1) and

N (28 8,5 A28 — 1)),
N (f(x) = Clx),s) = { N7 (28 S][al|R, s A2? — 27

, (145)
N7 (2% S)|z]|*, s A28 — 22F))

for all x € By.

PROOF. Let

?

S
L(x,y)=q S (/" +[lyll") :
S (I + 12l 2E + [yl1F) ;

for all x,y € B;. Now

'N/(S,€§N8>
o N (S {1617+ 16 yl17} L 6Ys),
N(LE ), 07s) = O v (sLpee® 11y

+{lleal PR+ eyl 2R) } s

(— 1as N — oo,

=< —1las N — oo,

(. —1las N — oo.

Thus, (133) holds. But, we have

for all z € B;. With the property

N (%L(&x, 0), s) — N (LL(z,0),5).



NON-STABILITIES OF MIXED TYPE EULER-LAGRANGE ...

Hence,

37

S 23

73>7

S 23
quR,s),

14
||x||2R,s)

S 23
- 227

x

( N’ (STZ?),E?S),
N (%L(m,()),s) (2 23||x|\R,e§Rs)
\ N’ (STZ?)HmHQR,E?_ZRS).
Hence, the inequality (136) holds for
- :{ 2137 23171%7 23;21% z:f =0,
3, w-m s Uf =1

Now, from (136), we prove the followin

g cases for condition (7).

N (f(x) = C(x), 5) N (f(x) = C(x),s)
> N’ <<€1:£1 L(x,()),s) > N ffé) L(m,()),s)
() ) ()
=N () - 5209) =N () 25E05)
=N (55 ’S> =N Agf;%) ’3>
=N ((S 2%),s\(2% — 1)) =N ((S 2%),s\(1 —2%))
Also, from (136), we prove the following cases for condition (7).
N (f(z) = C(z), 5) N (f(z) = C(x), s)
> N’ f:)L(:E,O),S> >N (£ Z )
=N (G5 - sllell, o) (i > §;S||x||R s)
=N (25 ) - 5llal, ) =" (=) f;ﬁu 1,5
=N (5550 - 52 llal %, 5) =N ((55) - 55 lIal%, s
= N (S 23||z[|", sA(2® — 2%)) = N (S 23||z||", sA(2" — 2%))
Finally, the proof of (136) for condition (iii) is similar to that of condition (ii). Hence
UJ

the proof is complete.



38 J. M. RASSIAS, M. ARUNKUMAR*, AND E. SATHYA

Theorem 5.9. Let f : By — By be an odd function fulfilling the inequality
(114), for all z,y € By and s > 0, where L : Bf — [0,00) with the condition

lim N (L((Yz, 07 y), 7)) =1 (147)
N—oo
where
|k of I=0,

holds for all x,y € By. Assume that there exists L = L(I) such that the function

1 s
LG@.0) = 2 (3:0)
with the property
1
N (£_4L<€15570)7 8) = N"(LL(x,0),s) (149)

I
for all x € By and all s > 0. Then there is only one quartic mapping Q : By — Bo

satisfying the functional equation (1) and

N ((0) = Qo)) 2 A" (£ 5262005 (150)

for all x € B;.

PRrROOF. The proof of the theorem is similar lines to that of Theorem 5.7 by
defining

1
Uf(z) = gjfa(gﬂi),
I
for all x € B;. O

Using Theorem 5.9, we prove the following corollary concerning the stabilities of
(1).

Corollary 5.10. Assume that S and R are positive numbers. Let f : By — Bo
be an even function fulfilling the inequality

N (S, )
N (Fi(x,y),s) = § N (S {12l + [lyl]F} s) R #4;
NS {1yl + el PR+ ylP7 )} s), 2R # 4;

(151)

for all x,y € By, then there is only one quartic mapping Q : By — By satisfying
the functional equation (1) and
N (K* S,2 s|kt —1]),
N (f(z) = Q(),s) = ¢ N (k* Slz||", 2 s|k* = k7]) , (152)
N’ (k4 S|z||*®,2 s|k* — kQR])

for all x € By.
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Theorem 5.11. Let f : By — By be a function fulfilling the inequality (124),
for all z,y € By and all s > 0, where L : B3 — [0,00) with the conditions (153)
and (147) where {1 are respectively defined in (134) and (1/8) holds for all x,y € B;.
Assume that there exists L = L(I) such that the function

3
L(x,0) = %L (5:0) and L(z,0)= %L (+:0)
with the property

N (%L(&x,O),s) N (LL(2,0),5), N (%L(ﬁlx,O),s) _ N (LL(x,0), 5)

(153)
for all x € By and s > 0.. Then there is only one cubic mapping C : By — By and
only one quartic mapping Q : By — Bs satisfying the functional equation (1) and

El_[
N ((0) = Q).s) 2 N (({=7 ) (L0 4 L-n0s)  (15)

for all x € By.

Using Theorem 5.11, we prove the following corollary concerning the stabilities
of (1).

Corollary 5.12. Assume that S and R are positive numbers. Let f : By — Bs
be an even function fulfilling the inequality

N’ (S, s)
N (Fe(x,y),5) > ¢ N (S {[J«]|® + [[yll*} ,s), R #3,4;
N (S {2 lF 1wl + {12 PF + [[glP7} ) s) . 2R #3,4;

(155)

for all x,y € By, then there is only one quartic mapping Q : By — By satisfying
the functional equation (1) and

N ([23 + kY S, s [N23 — 1] +2]k* — 1]]),
N (f(x) = Q(x),s) > ¢ N ([2° + k'] S]] [, s [A[2® — 27| + 2|k* — KF]])
N7 (2% + k1] ||| [, s [A]28 — 228] + 2|k* — K*R]]) ,
(156)

for all x € By.
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