Mathematical Analysis and its Contemporary Applications Volume 1, Issue 1, 2019, pp. 44-49 doi: 10.30495/MACA.2021.679842

Stability of cosine type functional equations on module extension Banach algebras

A. Zivari-Kazempour

ABSTRACT. Let A be a Banach algebra and X be a Banach A-bimodule. In this paper we investigate the stability of the cosine type functional equation

$$\varphi(ab, a \cdot y + x \cdot b) + \varphi(ab, x \cdot b - a \cdot y) = 2\varphi(a, x)\varphi(b, y),$$

on module extension Banach algebra $\mathfrak{A} = A \oplus X$.

1. Introduction

The problem of the stability of functional equations was originally stated by Ulam in [10]. He proposed the following famous question concerning the stability of homomorphisms:

Let G be a group and let G' be a metric group with metric d. Given $\varepsilon > 0$, does there exist $\delta > 0$ such that if a $f : G \longrightarrow G'$ satisfies

$$d(f(xy), f(x)f(y)) < \delta \quad x, y \in G,$$

then there is a homomorphism $F: G \longrightarrow G'$ with $d(f(x), F(x)) < \varepsilon$, for all $x \in G$?

In [5], Hyers considered the case of approximately additive mappings $f: X \longrightarrow Y$, where X and Y are Banach spaces and f satisfies

$$\|f(x+y) - f(x) - f(y)\| \le \varepsilon,$$

for all $x, y \in X$. It was shown that the limit

$$F(x) = \lim_{n \to \infty} 2^{-n} f(2^n x),$$

exists for all $x \in X$ and that $F: X \longrightarrow Y$ is the unique additive mapping satisfying

$$\|f(x) - F(x)\| \le \varepsilon.$$

A generalization of Hyers' theorem provided by Th. M. Rassias [8].

The functional equation

$$f(x+y) + f(x-y) = 2f(x)f(y),$$
(1)

2010 Mathematics Subject Classification. Primary: 39B20; Secondary: 39B50.

Key words and phrases. Stability, Cosine functional equations, multiplicative function.

is called the cosine or *d'Alembert's* functional equation [6].

The stability of the functional equation (1) was investigated by Baker in [2]. He proved the following.

Let $\varepsilon \geq 0$ be a given number and G be an abelian group. Then any unbounded solution $f: G \longrightarrow \mathbb{C}$ of the inequality

$$|f(x+y) + f(x-y) - 2f(x)f(y)| \le \varepsilon,$$

satisfies the cosine equation (1). Badora and Ger [1] proved its superstability under the condition

$$|f(x+y) + f(x-y) - 2f(x)f(y)| \le \varphi(x) \text{ or } \varphi(y).$$

The stability of Cosine functional equation is also investigated in [3, 4] and it generalized by Kannappan and Kim [7].

Suppose that $\mathfrak{A} = A \oplus X$, where A is a Banach algebra and X is a Banach A-bimodule. Then \mathfrak{A} with norm ||(a, x)|| = ||a|| + ||x|| and product

$$(a,x)(b,y) = (ab, a \cdot y + x \cdot b) \quad (a,b \in A, \ x,y \in X),$$

is a Banach algebra which is known as a module extension Banach algebra.

The map $T : \mathfrak{A} \longrightarrow \mathfrak{A}$, defined by T(a, x) = (a, -x), is multiplicative. That is, T((a, x)(b, y)) = T(a, x)T(b, y), and $T \circ T = id$, where *id* is the identity map. Let $\varphi : \mathfrak{A} \longrightarrow \mathbb{C}$ be a function and consider the functional equation

$$\varphi(ab, a \cdot y + x \cdot b) + \varphi(ab, x \cdot b - a \cdot y) = 2\varphi(a, x)\varphi(b, y).$$
(2)

By setting p = (a, x) and q = (b, y) in (2), we obtain

$$\varphi(pq) + \varphi(pT(q)) = 2\varphi(p)\varphi(q), \quad p, q \in \mathfrak{A}.$$
(3)

This equation has the same form as the cosine functional equation (1).

We say that a function $\varphi : \mathfrak{A} \longrightarrow \mathbb{C}$ is of approximate a cosine type function, if there is $\delta > 0$ such that

$$|\varphi(pq) + \varphi(pT(q)) - 2\varphi(p)\varphi(q)| < \delta, \quad p, q \in \mathfrak{A}.$$

In the case where $\delta = 0$, φ satisfies the functional equation (3).

A Banach A-bimodule X is said to be unit linked if A has a unit element e and $e \cdot x = x \cdot e = x$, for all $x \in X$, and it is called symmetric if $a \cdot x = x \cdot a$, for all $a \in A, x \in X$. For example, each commutative Banach algebra A is symmetric A-bimodule over itself.

The main purpose of this paper is to prove the stability problem of equation (3), on the module extension Banach algebra \mathfrak{A} .

A. ZIVARI-KAZEMPOUR

2. Stability of equation (3)

In the following result we assume that X is a symmetric Banach A-bimodule and $\mathfrak{A} = A \oplus X$.

Theorem 2.1. Let $f, g : A \longrightarrow [0, \infty)$ be functions and $\varphi : \mathfrak{A} \longrightarrow \mathbb{C}$ satisfies the functional inequality

$$|\varphi(pq) + \varphi(pT(q)) - 2\varphi(p)\varphi(q)| \le \min\{f(a), g(b)\}.$$
(4)

Then the map $F : A \longrightarrow \mathbb{C}$ given by $F(t) = \varphi(t, 0)$ for all $t \in A$, is either bounded or multiplicative. Moreover, φ satisfies in

$$|\varphi(p)^2 - \frac{1}{2}\varphi(p^2) - \frac{1}{2}F(a^2)| \le \frac{1}{2}\min\{f(a), g(a)\}, \ p \in \mathfrak{A}.$$

PROOF. Setting p = (a, 0), q = (b, 0) in (4), we get

$$|\varphi(ab,0) - \varphi(a,0)\varphi(b,0)| \le \frac{1}{2} \min\{f(a),g(b)\},\$$

for all $a, b \in A$. Thus, it follows from [9] that $F(a) = \varphi(a, 0)$ for all $a \in \mathcal{A}$, is either bounded or multiplicative. Now setting p = q = (a, x), in (4), we get

$$|\varphi(a^2, 2(a \cdot x)) + \varphi(a^2, 0) - 2\varphi(a, x)^2| \le \min\{f(a), g(a)\}.$$

Therefore

$$|\varphi(p)^{2} - \frac{1}{2}\varphi(p^{2}) - \frac{1}{2}F(a^{2})| \le \frac{1}{2}\min\{f(a), g(a)\},\$$

as requerd.

Proposition 2.2. Suppose that A is a unital commutative Banach algebra, φ : $A \oplus A \longrightarrow \mathbb{C}$ satisfies the functional inequality (4), and let $h(x) = \varphi(e, x)$ for all $x \in A$. Then

(1) h is either bounded, or

(2) h satisfies the cosine functional equation

$$h(x+y) + h(x-y) = 2h(x)h(y), \quad x, y \in A.$$

PROOF. Setting p = (e, x), q = (e, y) in (4). We obtain

$$|\varphi(e, x+y) + \varphi(e, x-y) - 2\varphi(e, x)\varphi(e, y)| \le \min\{f(e), g(e)\}.$$

Using $h(x) = \varphi(e, x)$,

$$|h(x+y) + h(x-y) - 2h(x)h(y)| \le \min\{f(e), g(e)\}\$$

for all $x, y \in A$. Now it follows from Theorem 5 of [2] that h is bounded or it is a cosine function.

46

Remark 2.3. We recall that by Theorem 2 of [2], h satisfies in the condition (2) of preceding Proposition, that is h satisfies the cosine functional equation if and only if there exists a complex-valued function m defined on A such that for all $a, b \in A$,

$$h(a) = \frac{1}{2} (m(a) + m(-a)), \text{ and } m(a+b) = m(a)m(b).$$

Proposition 2.4. Let A be a commutative Banach algebra, $\varphi : A \oplus A \longrightarrow \mathbb{C}$ satisfies the functional inequality (4). Then φ is either bounded, or $\varphi \circ T = \varphi$.

PROOF. Let $\Gamma_{\varphi} = \frac{1}{2}(\varphi + \varphi \circ T)$. Since φ satisfies in (4), by the same method as in [2] we see that φ is either bounded or

$$\Gamma_{\varphi}(pq) + \Gamma_{\varphi}(pT(q)) = 2\Gamma_{\varphi}(p)\Gamma_{\varphi}(q), \quad p, q \in A \oplus A.$$

It follows from this equality that $\Gamma_{\varphi} = \varphi$, and so $\varphi \circ T = \varphi$.

If we take q = (0, 0) in (4), then we get the following result.

Corollary 2.5. Let $f, g : A \longrightarrow [0, \infty)$ be functions and let $\varphi : \mathfrak{A} \longrightarrow \mathbb{C}$ with $\varphi(0, 0) \neq 0$, satisfies the functional inequality (4). Then

$$|\varphi(p) - 1| \le \frac{1}{2|\varphi(0,0)|} \min\{f(a), g(0)\},\$$

for each $p = (a, x) \in \mathfrak{A}$, and so φ is bounded.

Corollary 2.6. Let $\delta > 0$ and $\varphi : \mathfrak{A} \longrightarrow \mathbb{C}$ with $\varphi(0,0) \neq 0$, satisfies the functional inequality

$$|\varphi(pq) + \varphi(pT(q)) - 2\varphi(p)\varphi(q)| \le \delta.$$
(5)

Then φ is bounded and there exist $\lambda \in \mathbb{C}$ such that $|\varphi(p) - 1| \leq \frac{\delta}{2|\lambda|}$, for all $p = (a, x) \in \mathfrak{A}$.

PROOF. This follows from Corollary 2.5 for $\lambda = \varphi(0,0)$ and $f(a) = g(b) = \delta$. \Box

As a consequence of above Corollary, we obtain the next result.

Corollary 2.7. Let $\varphi : \mathfrak{A} \longrightarrow \mathbb{C}$ be a cosine type function. Then $\varphi(p) = 1$ for all $p \in \mathfrak{A}$.

We denoted by Inv(A), the set of all invertible elements of unital Banach algebra A.

Theorem 2.8. Suppose that A is a unital commutative Banach algebra, and let $\varphi : A \oplus A \longrightarrow \mathbb{C}$ satisfies the functional inequality (4). If φ is unbounded, then it setisfies in

$$|\varphi(p) - \frac{1}{2}F(a)(m(xa^{-1}) + m(-xa^{-1}))| \le \frac{1}{2}\min\{f(a), g(e)\},\tag{6}$$

for each $p = (a, x) \in Inv(A) \oplus A$, where $F : \mathbb{R} \longrightarrow \mathbb{C}$ is a multiplicative function and $m : \mathbb{R} \longrightarrow \mathbb{C}$ is a exponential.

A. ZIVARI-KAZEMPOUR

PROOF. By Theorem 2.1, the map $\varphi(a,0) = F(a)$ is a multiplicative function from A to \mathbb{C} and by Proposition 2.2, $\varphi(e,x) = h(x)$ is a solution of the cosine functional equation. It follows from Remark 2.3, that there exists an exponential function $m : \mathbb{R} \longrightarrow \mathbb{C}$ such that

$$\varphi(e,x) = h(x) = \frac{1}{2} \big(m(x) + m(-x) \big).$$

for all $x \in A$. Taking p = (a, 0) and $q = (e, a^{-1}x)$ in (4), gives

$$|\varphi(a,x) + \varphi(a,-x) - 2\varphi(a,0)\varphi(e,xa^{-1})| \le \min\{f(a),g(e)\},\tag{7}$$

for each $p = (a, x) \in Inv(A) \oplus A$. By Proposition 2.4, $\varphi \circ T = \varphi$. Therefore $\varphi(a, x) = \varphi(a, -x)$, and so inequality (7) implies that (6).

From Theorem 2.8 we have:

Corollary 2.9. Let $\delta > 0$, A be a unital commutative Banach algebra, and let $\varphi : A \oplus A \longrightarrow \mathbb{C}$ satisfies the functional inequality (5). If φ is unbounded, then there exists a multiplicative function $F : \mathbb{R} \longrightarrow \mathbb{C}$ and a exponential function $m : \mathbb{R} \longrightarrow \mathbb{C}$ such that

$$|\varphi(p) - \frac{1}{2}F(a)(m(xa^{-1}) + m(-xa^{-1}))| \le \frac{\delta}{2},$$

for each $p = (a, x) \in Inv(A) \oplus A$.

Note that if $\delta = 0$ in Corollary 2.9, then for all $p = (a, x) \in Inv(A) \oplus A$, we get

$$\varphi(p) = \frac{1}{2}F(a)(m(xa^{-1}) + m(-xa^{-1})).$$

Acknowledgment

The authors would like to thank the referees for proving valuable comments and helping in improving the content of this paper.

References

- R. Badora, R. Ger, On some trigonometric functional inequalities, Functional Equation Results and Advances, Kluwer Acad. Publ., (2002), 3-15.
- [2] J. Baker, The stability of the cosine equation, Proc. Amer. Math. Soc., 80 (3) (1980), 411-416.
- [3] B. Bouikhalene, E. Elqorachi and J. M. Rassias, *The superstability of d'Alembert's functional equation on the Heisenberg group*, Appl. Math. Lett., 23(1) (2010), 105-109.
- [4] P. D. P. Friis, d'Alembert's and Wilson's equations on Lie groups, Aequa. Math., 67(2004), 12-25.
- [5] D. H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci., 27(1941), 222-224.
- [6] Pl. Kannappan, The functional equation $f(xy) + f(xy^{-1}) = 2f(x)f(y)$ for groups, Proc. Amer. Math. Soc., 19(1968), 69-74.
- [7] Pl. Kannappan and G. H. Kim, On the stability of generalized cosine functional equations, Ann. Acad. Paedagogicae-Cracoviensis, Studia Math., (2001), 49-58.

- [8] Th. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc., 72(1978), 297-300.
- [9] L. Szsekelyhidi, On a theorem of Baker, Proc. Amer. Math. Soc., 84(1)(1982), 95-96.
- [10] S. M. Ulam, Problems in Modern Mathematics, Chap. VI, Wiley, New York, 1960.

DEPARTMENT OF MATHEMATICS, AYATOLLAH BORUJERDI UNIVERSITY, BORUJERD, IRAN. *Email address:* zivari@abru.ac.ir